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This report presents the results of a generalized laboratory and phenomenological
5'ravestigation of granular media subject to a variety of stress states. Emphasis was given to

ress states which involved rotations of principal planes as found below a flexible pave-
we t.

From an extensive study of hollow cylinder and triaxial experimental response, a number
observations were evident: 1) isotropic behavior for monotonic loading was observed, where

4S anisotropic response for cyclic loading was noted; 2) membrane penetration influences for
hydrostatic loading-are significant; 3) stress-strain response is significantly effected by

ress path, i.e. characterization of a moving wheel (hollow cylinder) in a triaxial device
not possible; and 4) assuming that the yield surface is attached to the stress point is

not a bad first approach.

The generalized phenomenological plasticity model developed herein, incorporates some
-the classical aspects: yield surface, and a flow rule (normality is maintained); (see back
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19. Continued from reverse side

however, unlike many formulations, the consistency condition is automatically satisfied, and
plays no role in determination of the plastic modulus. For the non-hardening version, KID
depends solely on the current stress state, whereas with the hardening modification, stress
history effects are manifested by the evolution of an independent hardening control surface.

The developed model was used to successfully predict the stress-strain response of:
1) hollow cylinder data under different principal plane orientations, 2) expanding cavity
(pressuremeter data), 3) cyclic conventional triaxial compression (CTC) results, and 4) a
combination of loading, unloading, and hydrostatic compression. Further research of stress
paths which replicate a moving wheel is recommiended.
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KEY TO SYMBOLS

b parameter controlling shape of dilation portion of
yield surface

Cc$ Cs  compression and swell indices

dc, dee , dcp  total, elastic, and plastic (small) strain increments

e p
de, de , de deviatoric components of dE, d e & dc respectively

de, d e , de equal to V(3 de:de), V(3 de :de ) & 1(3 de :de
2 2 2

respectively

dEkk incremental volumetric strain

dcek dek k  incremental elastic and plastic volumetric strains

ds deviatoric components of do

do stress increment

Dr relative density in %

e deviatoric components of strain e

ea initial voids ratio

E elastic Young's modulus

f(G) failure or limit surface in stress space

F() yield surface in stress space

F (a) bounding surface in stress space

G elastic shear modulus

g(e) function of Lode angle e used to normalize %/J2

I1, 12, I3 first, second & third invariants of the stress tensor a

(I) i  initial magnitude of I for virgin hydrostatic loading

%, 

%
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I0 intersection of yield surface with hydrostatic axis

(the variable used to monitor its size)

(Io) Pmagnitude of 10 for the largest yield surface
established by the prior loading

J, 2square root of second invariant of s

/J2 equivalent octahedral shear stress - /J 2/g(e)

k parameter controlling size of limit or failure surface

k maximum magnitude of kmob established by the prior
mem loading

kmob current mobilized stress ratio computed by inserting
mo the current stress state in the function f(a)

K elastic bulk modulus

K dimensionless elastic modulus number
u

Kp plastic modulus

K plastic modulus at conjugate point C
pF

(Kp )o plastic modulus at the origin of mapping

m exponent to model curvature of failure meridion

unit normal gradient tensor to yield surface

n exponent to control field of plastic moduli

interpolation function

n magnitude of n applicable to compression stress space

N slope of zero dilatancy line in VJ2-II stress space

NREP number of load repetitions

p mean normal pressure (-I,/3)

Pa atmospheric pressure

p0 or pO initial mean pressure

q shear stress invariant, - V(3Jz) - V(f sijs,,)

q equivalent shear stress invariant, - /(3J 2 )/g(6)
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Q parameter controlling shape of consolidation portion of

yield surface
r parameter to model the influence of a3 on E

R parameter to model deviatoric variation of strength .4-..

envelope

s deviatoric components of a

S slope of dilation portion of
yield surface at the origin of 1J.-I, stress space %

XN slope of radial line in VJ 2-I, stress space (below the
zero dilation line of slope N) beyond which the effects
of preconsolidation are neglected (0 < X S 1)

*
z stress obliquity /J 2 /I

scalar mapping parameter linking current stress state U
to image stress state a on hardening control surface

B' modified magnitude of B in proposed hardening option to
account for preconsolidation effects

reload modulus parameter for bounding surface hardening
option

YI, Y2 , Y, reload modulus parameters for proposed cyclic hardening
option

r Lame's elastic constant

6 distance from current stress state to conjugate stress
state

60 distance from origin of mapping to conjugate or image
stress state

6 Kronecker delta

components of small strain tensor

-- e -p, E ,total, elastic, and plastic shear strain invariants,
V( e ijeij) etc. _-

C total volumetric strain

Ckk9 £kk elastic and plastic volumetric strains

e Lode's parameter -7
. , .7
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A plastic stiffness parameter for hydrostatic compression

1.1 Lame's elastic constant

- Poisson's Ratio

0 components of Cauchy stress tensor

a stress tensor at conjugate point on bounding surface

Ol, O, 03 major, intermediate, and minor principal stresses

ar, az, a8  radial, axial, and hoop stress components in
cylindrical coordinates

o Mohr-Coulomb friction angle or stress obiliquity

*c Mohr-Coulomb friction angle observed in a compression

test (i.e., one in which 02 - 0,)

oe Mohr-Coulomb friction angle observed in an extension

e test (i.e., one in which a, - 02)

c ev friction angle at constant volume or zero dilatancy

X ratio of the incremental plastic volumetric to shear
strain (- d$ /dcP)

g vi



ACKNOWLEDGEMENTS

The investigators would like to thank the United States Air Force Office

of Scientific Research (AFOSR) for sponsoring this research under contract N
AFOSR-84-0108. They are also deeply indebted to Col. Lawrence Hokanson, their

technical monitor for providing insight into many aspects of the work. To

Professor A. Saada for supplying excellent hollow cylinder data under various

rotation of principle planes. Also, Professor Frank C. Townsend for his

expertise in laboratory testing, and Professors Daniel Drucker and Lawrence

Malvern for their help in characterizing soil as a continuum and/or an

elastoplastic material. Finally, to Pat Cribbs for her typing and editorial

skills.

xvii

I1' .'



FOREWORD

The research reported herei-n is the second year's efforts of a two year

study to investigate the stress-strain-strength of granular media in the hopes

of characterizing it as an elastoplastic continuum. In the development,

emphasis was given to stress paths which involved rotations of the principal

planes, a very real world situation, e.g., a passing moving wheel, an

earthquake, etc. Also, to improve on the available data sets (hollow

cylinder, and a few triaxial strength tests), a number of triaxial tests were

performed in an attempt to: )- replicate the hollow cylinder tests, -2)

investigate anisotropy (both inherent and stress induced, and 3) probe the

shape of the yield surface (that which separates elastic from plastic

behavior).

In the first year's effort, a comphrensive review of past theoretical and

laboratory investigations was undertaken. It was concluded that even though

many sophisticated phenomenological plasticity representations had been

developed to characterize the likes of anisotropy, and cyclic hardening, they

were totally unable to simulate the stress-strain-strength response of

granular media under the rotation of the principal planes.

Consequently, the second year's effort concentrated on the reevaluation

- of the state variables which control the stress-strain, and strength

characteristics of granular soil. From this investigation, it was discovered

that there existed a unique relationship between plastic modulus and stress

state, and that the assumption of the yield surface being attached to the

stress state was not a bad first approach.
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However, the research also revealed that the significance of material

anisotropy may not be as important as the type of applied surface tractions.

This was concluded from the fact that the strength data from the hollow

cylinder tests does not fit any of the strength criterion developed from

cubical triaxial devices, and the former device appears to develop

significantly more volumetric compression than its latter counterpart, for the

same principal stress states. Also, from the limited test data (limited

equipment), i.e., Hydrostatic Compression results, inherent anisotropy was not

observed. Consequently, it was concluded that even though any two tests may

have the same principal stresses applied to their respective specimens, if

they employ different boundary tractions (particulary shear stresses), their

response may be significantly different i.e., it violates Principle of

Material Frame Indifference. This was attributed to the particulate nature of

the media, in particular the rearrangement of the soil's fabric.

The report initiates with the University of Florida's laboratory

experiments, followed by the basic model development. Theoretical

development, and the model's prediction of the hollow cylinder results for

kj various principal plane orientation is subsequently presented, along with the

conclusions and recommendations for further research.
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CHAPTER 1

LABORATORY RESULTS

1.1 Introduction

Laboratory tests evolved from the need of the designer to know the

engineering properties of a soil in order that the settlements, stability or

flow rates may be accurately determined. One of the standard laboratory tests

used in measuring such properties is the conventional triaxial testing

apparatus. Developed through the efforts of Casagrande, this simple device is

routinely used to determine the stress-strain, and strength characteristics of

soil. Unfortunately, the test is very limited in the stress states which may

be applied to the specimen. For instance, a soil element subject to a passing

moving wheel undergoes a continuous cyclic rotation of principal stress i.e.,

increasing levels of shear stress in combination with normal stresses. Since

the triaxial device is incapable of subjecting a specimen to a shear stress,

the standard test used in representing such a loading is simply a cyclic

variation of the axial force (resilient modulus test). This approach has been

seriously questioned (Ishihara 1983) as being highly unconservative with the

possibility of catastrophic failure (liquification).

Consequently, the purpose of the tests reported herein were three-fold:

1) obtain conventional triaxial compression (increase in axial load) results

for different levels of deviatoric (principal stress difference) stresses and

cell pressures in order to investigate the evolution of the yield surface and

plastic modulus for the model development of Chapter 3 (hollow cylinder data

1



wasn't available; 2) perform cyclic conventional triaxial compression and

hydrostatic compression (increase in only cell pressure) tests (compliments

the hollow cylinder data) to study the significance of anisotropy (inherent as

well as stree-induced) on the evolution of strength and the plastic strain

rate direction (i.e., associated or non-associated flow, see Chapter 3); and

3) perform special triaxial tests which bound the hollow cylinder

S'-representation of the moving wheel stress path. The latter series of tests

will answer the question as to the appropriateness of the triaxial device in

characterizing loading states which involve principal plane rotation :1
(earthquake, sea beds, etc.).

However, before the results are presented, a discussion of current state

of the art in triaxial deformation monitoring and data capture is given. The

former was undertaken to ensure that uniform deformation fields were obtained,

as well as minimizing the influence of end caps.

1.2 Deformation Measurements

In order to accurately obtain the deformation field within a triaxial

specimen, one needs to monitor both the axial and lateral specimen

movements. Presently, there exists within the geotechnical community a number

of different measuring devices. Three of the most common are presented along

with the reasons (pros and cons) for the selection of the Linear Variable

Differential Transformer device.

1.2.1 Strain Gauge

One of the most common contact devices available to measure specimen

deformations are of the strain gauge variety. Basically, the gauge is used to

determine the flexural strains in a simply supported beam attached to the

specimen. Depicted in Figure 1.la and l.lb is a plan and cross-sectional view

of a proposed device consisting of three brackets affixed to the sample in the

2
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vicinity of its middle one-third. Epoxied to the central aluminum beam of

each bracket are two pairs of gauges (two on each side). They are

subsequently wired to form an unbalanced Wheatstone bridge circuit; with the

individual resistors (legs) in the bridge connected to produce the greatest

imbalance for the smallest strain.

-I

a) Plain View b) Cross-Sectional View

Figure 1.1 Proposed Strain Gauge Device. -

Using an aluminum strip 0.2 in (5 mm-) wide by 0.02 in. (0.5 mm) thick,

specimen deformation on the order of one in ten thousandths of an inch are

available, if the resolution of the voltmeter is on the order of 200 micro __

volts (Linton, 1986). A typical data acquisition system, eg. HP 3497A, has

the capability of measuring on the micro volt scale. Cost of raw material in

the brackets, gauges and calibration micrometer is on the order of

3



7
$1,500.00. Devices similar to the one discussed have been used by a number of .
researchers, (Boyce, 1983).

Some of the disadvantages of this form of measurement are: 1) in order to

record deformation, the aluminum bar has to flex thereby applying a stress

traction or the specimen on the order of 1 psi; 2) the necessity of periodic

calibration: 3) the uncertainity of water proofing the gauges; and 4) the

possibility of equipment destruction (induced permanent deformation) due to

large specimen deformations.

* 1.2.2 Non-Contact Devices

Non-contact measurement instruments generally fall into one of four

categories: 1) inductive, 2) ultrasonic, 3) optical, and 4) pneumatic.

Possibly due to increase in demand, the accuracy of all representative devices

out dured oarakefsentiwvty (oneasinfive hndrpedmtso ane inh) inucaed

has imred Pre ak fsenthwver, ultrasnfice andrpeumtio ae gec)nerallsued

of the former, and size constraints, as well as ability to perform submerged

in the case of the latter. Optical techniques, such as lasers look promising

with the aid of micro computers and robotics; however, the necessary capital

expenditures required to develop holographic equipment is presently

prohibitive. Inductive equipment, both small and fully immersible have found

use in monitoring shaft or plate thickness, but only recently have there been

asatepesetmnatve por o sae prsenda19. Abredicsonaswl

asattepsetto v moit ro p resone (rsad19. Abredicson aswl

Inductive measurement of distance uses the eddy currents generated in a

metallic target through high frequency excitation to stimulate the impedance

of a coil. This reaction is then conditioned and linearized to produce a

direct relationship between position and output voltage (Bristol Ltd.,

1985). Presented in Figure 1.2 is the plan and cross-sectional view of a
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proposed inductive setup to monitor horizontal movement of a soil specimen.

As depicted in the figure, the specimen is in contact with four columns of -

metallic plates. Each column is composed of five square plates. 1 in. by 1

in. (25 mm by 25 mm), of 0.04 in. (1 mm) thickness and separated by a 1/6 in.

(4.2 mm) gap. The size of an individual plate is mandated by the inductive

sensing device. The plates are curved to a 1.9 in (48 mm) radius, and are

attached to the specimen by either a combination of epoxy and cyanoacryl ate

adhesive, or through compressive forces generated from a rubber membrane

affixed between the lateral plates. A total of twenty horizontal measurements

(one for each plate) would be available with this setup.

a) Plan View b) Cross-Sectional View

Figure 1.2 Inductive Set Up for Measuring Horizontal Deformations.
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Because the plates are moving downward, it is necessary that the sensing

* device be capable of vertical motion. Moreover, if it is desired to use the

same sensing device for all plates, both rotary and vertical stepping motors

are suggested. The former to rotate the sensing device, and the latter to

* vertically align the device with an individual plate.

If vertical specimen deformation is needed, Figure 1.3 presents a

suggested setup. In this approach, thin metallic plates are cantilevered to

the specimen, and the sensing equipment is fixed to the base of the triaxial

device.

* The inductive setup was not selected for the research reported herein for

two reasons: 1) even though the sensing device is non-contacting, a large

) metallic target must be glued to the specimen and 2) at time of selection,

the sensing device was only capable of measuring one in five hundredths of an

inch (0.05 mmi).

Figure 1.3 Inductive System for Measurement of Vertical Deformations.
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1.2.3 Linear Variable Differential Transformers

The final option investigated to monitor specimen deformation were linear

variable differential transformers (DCDTs). Available in alternating or

direct current, the DCDTs work by exciting a primary coil placed between two

symmetrical secondary coils which are in an opposing series circuit. The

electrical potential between the primary and secondary coils is monitored and A
converted to deformation. However, the alternating current devices require an

additional unit to convert AC to DC prior to the determination of

deformation. The DCDTs have many valuable attributes for measurement:

1) near frictionless measurement, 2) infinite mechanical life, 3) extremely

high resolution, 4) core and coil separation, and 5) null repeatability

(Herceg, 1985).

Even though the AC devices are much smaller than their DC counterparts,

previous research by the investigators found them questionable for the

following reasons: 1) erratic readings often developed due to outside power

sources, and 2) the necessity to continuously recalibrate the instruments due

to drift. Consequently, standard DCDTs with ranges of one half inch (13 mm)

and one inch (25 mm) were used. This results in a full range output of about

80V/inch and 40Vinch (3.2V/mm and 1.6V/mm). Presented in Figures 1.4a and

1.4b is a proposed DC-LVDT system to monitor vertical and horizontal

deformations in a soil specimen's middle one third. Figure 1.4a depicts the

cross-sectional view, whereas Figure 1.4b illustrates the plan view. It

should be noted that all brackets are designed with sliding rods within

stainless steel sleeves (top and bottom, Figure 1.4b) or a combination of

DCDTs (middle, Figure 1.4b) to result in linear deformations and prevent the

transfer of normal forces onto the specimen. The weight of the brackets and

DCDTs will result in an average vertical shear stress of approximately 1 psi

7
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(7 kPa) over the contact surface. However, this may be reduced to zero, if

floatation is employed. Total cost of DCDTs, brackets and necessary machining

is in the neighborhood of $1,600.00.

Due to cost, previously discussed benefits, and limited deteriments, the

investigators decided to construct and compare the LVDT measuring system to

the conventional burette and dial gauge system (Lambe et al., 1969)

7 7,
*_ . \ 1

a) Plan View b) Cross-Sectional View

Figure 1.4 OCOT Measurement Device.

. 1., .. _I

the benefits of an automated data acquisition and reduction package. A whole

slew of hardware specific software packages are commerically available for
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such tasks. However, the system developed was one which incorporated hardware

(equipment) most often found in and around a soil laboratory. The package

depicted in Figure 1.5 consists of: 1) a micro computer and monochromatic CRT

(screen), 2) a multiprogrammer and interface, 3) a 3.25 in. floppy drive unit,

(4) a two pen plotter, and 5) a printer.

The multiprogrammer (voltmeter), controlled by a micro computer software

package (TRITEST) developed at the University of Florida, automatically scans I.-

eight channels after the application of each load incement: four DCDTs

associated with the local measurement system (Figure 1.4), one DCDT to monitor

movement of top platen attached to the sample, two pore pressure transducers

(one for the cell, the other for the sample), one load cell to monitor axial

load, and a volumetric burette reading (inputed manually). All of the

measuring devices were read every two minutes with the captured data being

.'

a, -.

Figure 1.5 Photograph of the Computer System. -

immediately reduced and stored on both hard and soft medium (floppy disk drive

unit). Examples of available results are: 1) individual LVDT deformations,

9



2) local (Figure 1.4) and macro (computed from burette and platen movement)

vertical, horizontal, and volumetric strains, 3) effective vertical and

horizontal stresses, 4) Cambridge P' ((a1 + 2a3 )/3) , and Q' (ov - aH

and 5) Cambridge Z (eI - .H
) . Also, through the course of the test, the

operator has the option of viewing the measured response by a hardcopy

(printer), or by plots (CRT or plotter) or both. Moreover, multiple graphical

images (eq. local and macro Q' vs ) may be viewed concurrently. These

latter options were implenmented to provide a means of assessing the

performance of all instrumentation during the course of a test.

Two separate software packages, PRINTOUT and PLOTOUT, were coded to print

or plot the output (screen or plotter) for any permanently recorded data

set. Approximately twenty-five distinct graphs are available.

1.4 Soil-Sample Preparation-Back Saturation

The soil tested, commonly referred to as Reid-Bedford sand is composed of

89% quartz, 9% feldspar, 2% ferromagnesians and heavies. Particle shapes

range from subrounded to subangular with a coefficient of uniformity, Cu of

1.8, and a coefficient of curvature Cc of 1.0. The Unified Soil

Classification System identifies Reid Bedford as a fine sand with a group

symbol of SP. The average of five relative desity tests (ASTM D-2049)

indicate that the void ratio ranges from 0.59 to 0.91. These void ratios

correspond to a maximum dry unit weight of 104.0 pcf and a minimum dry unit

weight of 86.6 pcf respectively. All reported tests were run on samples with

a void ratio of 0.67 i.e., a relative density of 75%. Testing initiated with

the preparation of a specimen 5.95 in. (15.1 cm) high by 2.8 in. (7.11 cm) in

* diameter with a volume of 36.6 cubic inches (600 cc). The specimen was

constructed through aerial pluviation with a drop height of seven to nine

inches. No vibration was necessary, if the operator established a coherent

10.

A~e Gf.-,C A 7:



stream of falling sand particles instead of a spray. The specimen end caps

depicted in Figure 1.6 were polished aluminum platens with porous steel insets

for drainage. In addition each platen was coated with teflon spray to reduce V

the development of friction between the sand grains and the metal. Before

attachment of DCDTs, the specimen mold was removed after subjecting the

specimen to a vacuum of 5 psi (34 kPa).

I "-'a-.

Figure 1.6 Polished Aluminum Platen.

Attachment of the DCDTs was a three step process as Hepicted in Figure

1.7. First, the central bracket (local horizontal measurement device) was

attached to the specimen; a quick drying epoxy was used to provide a base -

which molds to the specimen, then a cyanoacrylate adhesive was used to firmly

attach the epoxy to the membrane (Step A Figure 1.7). Second, the bottom

bracket of the vertical measuring system was affixed (Step B) through a

similar process, followed by the top bracket containing the DCDTs (Step C).

~~11 , '



Care must be exercised in aligning the vertical DCDTs with their respective

cores. The whole process: placement of brackets, cementing, and hardening

takes approximately 30 minutes.

SIOP A Itoo S.. C

Figure 1.7 Steps for Attaching the DCDTs.

Following the placement of the local measurement system, the specimen was

saturated with water by repeatedly applying vacuum to the top of the sample

followed by deaired water entry through the bottom and subsequent back

pressuring. Instead of checking saturation through a conventional B test'I

(Lambe et al., 1969), saturation was determined by subjecting the specimen to

an aribitrary raise in cell and back pressure such that no effective stress

change occurred within the specimen. The volume of fluid entering the sample

(burette) is subsequently used to determine the degree of saturation as

12
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eVt(P 2 - PI) - (1 + e) P1 AV
S = eVt (P2  -PI ) (1.4.1)

where S = Saturation at state two.

Vt = The total volume of the specimen,

AV = change in burette reading,

e = specimen void ratio,

P1  = Pore pressure at state one,

and p2 = Pore pressure at state two.

The equation was obtained from Boyle's law, as laid out in 1610, and a phase

diagram. The latter approach was taken over the conventional B test (Lambe et

al., 1969) until degree of saturation was at least 95% in order to minimize

the-influences of stress induced anisotropy. Since conventional volume

measurements (hurette) were to be employed, B values of at least 95% were

maintained for all tests.

1.5 Triaxial Results

The triaxial results are presented by stress path: 1) Hydrostatic

Compression, 2) Conventional Triaxial Compression, and 3) Triaxial Moving

Wheel Representation. The first series of tests, Hydrostatic Compression,

were performed to obtain data for model predictions in Chapter 3, as well as

investigate anisotropy effects: inherent and stress induced. The

Conventional Triaxial Compression tests were used in model predictions of

Chapter 3, and for comparison of the Triaxial Moving Wheel Representation in

the latter part of this chapter. All tests had both monotonic and cyclic

histories. Also, many of the tests had replicate tests performed to improve

the quality of the data. For all plotted data, a circle is adopted as a macro

- * 1 T



reading (shaft displacement and burette to measure volume change) and a cross

is used to characterize a local reading (data obtained from OCOTs).

1.5.1 Hydrostatic Compression

Figures 1.8 through 1.11 depict the mean pressure increase and the

ensuing volumetric strain change on the Reid-Bedford sand with a nominal void

ratio of 0.67. Since the hydrostatic tests were the first series of tests

performed with the DCDTs attached to the specimen, it was decided to perform

the first test without the DCDTs attached, Figure 1.8. The volumetric

compression resulting from a change in mean pressure from 30 psi (207 kPa) to

100 psi (690 kPa) was 0.0042 in./in. The second test, Figures 1.9 and 1.10,

was performed with both local and macro equipment to check the reproducibility

of the equipment. The sample was observed to have a volumetric strain of

0.0040 in./in. from the macro device and a value of 0.0026 in./in. measured by

the local device. Based on the macro readings of Figures 1.8 and 1.9, one can

say with some degree of confidence that the DCDT brackets had miminal

influence on the macro response. However, comparing the macro (.0041 in./in.)

versus micro (.0026) response, the results at a first glance looked

discouraging.

It was initially thought that the epoxy which held the OCUTs to the

specimen may have slipped due to the surrounding cell water. Consequently, a

test, Figure 1.11, was performed on a dry specimen to investigate this

possibility. The local volumetric strain measurea in Figure 1.11 was 0.0029

in./in. for a 70 psi (480 kPa) mean stress increase. Since this is quite

close to the value of 0.0026 in./in. obtained from the previous test, slippage *

was ruled out. --

A close scrutiny of the slopes of Figures 1.9 and 1.10 reveal that the

initial slopes are quite similar, but at higher mean stresses, greater amounts

14
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Y~.of macro volumetric strain was being generated. Based on this fact, it was

readily recognized that membrane penetration may be significant.

To quantify membrane penetration, two diffc-ent mathematical idealization

were developed based on Figurt= 1.12. Starting with the triangular area

trapped between the membrane nd the sand particles in the left of Figure

__ 1.12, the elemental areas (between two particles) would be:

A D2  {1 T

A= 10 2 8(151)

The number of such areas over the height of the specimen is

N = H (1.5.1.2)17-.10
and multiplying by the circumference would give the total volume change

associated with the specimen as

6v= irD HD { 4 - r (1.5.1.3)
10 8

In the second approach, shown on the right of Figure 1.12, the membrane is

assumed to be pushed into the space provided by four adjacent spheres to give

an elemental volume of

v =D 2  1~ i (1.5.1.4)
10 Y T

The number of elemental volumes contained over the surface area is

N HirD

a
giving the total membrane penetration (volume change) for this approach as

(6 - i0I
=v TD 10 H D 12 (1.5.1.6)

where D =diameter of specimen

D0= average particle diameter

H = height of the specimen.

The volumetric strain associated with Equations 1.5.1.3 and 1.5.1.6 ranges

from 0.001 in./in. to 0.002 in./in.. If the latter value was subtracted from
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Figure 1.12 Membrane Penetration Models (Assumptlon-Parti'cles
are Spheres)
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K. the volumetric strains recorded in Figures 1.8, 1.9, and 1.11 volumetric

* strains of 0.0022 in./in,, 0.0020 in./in., and 0.0026 in./in. would be

obtained respectively. Agreement with the corresponding local volumetric

strains given in Figures 1.8, 1.10, and 1.11 would be excellent. Therefore,

it can only be concluded that the order of error due to membrane penetrationI

is similar in magnitude as those associated with the mean pressure change, if

the standard macro measuring system is employed. Consequently, the burette
Copeso4et.SneteDDssa h olgan ihltl rn

measuring system of volume change is not recommended for Hydrostatic

membrane influences, they are highly recommended as the alternate measuring

system.

The study of anisotropy initiates with the depiction (Figure 1.13) of the

hydrostatic compression's local vertical and horizontal strain reported in

test two (Figure 1.9). Scrutiny of the figure reveals that the inherent

anisotropy along this stress path is minimal, since the magnitudes of the

horizontal and vertical strains are quite similar. However, the stress-

induced effects are very significant, as seen from the cyclic response. This

is more readily visible from separate plots of mean stress, P, versus the

vertical and horizontal strains as shown in Figures 1.14 and 1.15. Evident
N...-

from the two figures is that the vertical strain is cycling between its

Kminimum and maximum value with little permanent strain buildup, whereas the

horizontal strain component shows significant strain increase for the same

mean pressure change. From a plasticity viewpoint, the above results suggests P

* that Reid Bedford sand may have an associative yield surface during virgin

loading, but a non-associative surface for cyclic response. The former will

be incorporated into the proposed plasticity model developed in Chapter 3.
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To check reproducibility, presented in Figures 1.16 and 1.17 are the

local horizontal and vertical strains versus the mean pressure increase for

the third hydrostatic compression test, Figure 1.11. Comparing Figures 1.14

with 1.16, and Figures 115 with 1.17, one readily sees the excellent

reproducibility of the data, and the benefits of the local measurement system

(DCDTs).

To investigate the possibility of stress-induced anisotropy for other

loading situations, tests two and three (Figures 1.10 and 1.11) were loaded to

failure along a convention triaxial compression stress path (increase in only

axial stress), Figures 1.18 - 1.21. In Figure 1.18 the invariant stress

ratio, Q/P, versus the macro (shaft and burette measurements vertical strain

of specimen two (Figure 1.9) is depicted. Q is defined as the vertical minus

the horizontal effective stress, and P is mean effective

stress [ ( v+ 2 H) / 3 1. Figure 1.19 shows the invariant stress ratio

Q/P, versus the local (DCDTs measuring system Z (ev EH) strains for the CTC

loading portion of sample two, Figure 1.10. E bar is presented in the latter

figure since it is good measure of deviatoric anisotropic strain

influences, strain of specimen two (Figure 1.9) is depicted. Q is defined

as the vertical minus the horizontal effective stress, and P is mean effective

stress F (a v+ 2a H) / 3 1 Figure 1.19 shows the invariant stress ratio, Q/P,

loading portion of sample two, Figure 1.10. E bar is presented in the latter

figure since it is good measure of deviatoric anisotropic strain influences.

Figure 1.20 presents the local (DCDTs) vertical versus horizontal strains from

the CTC loading portion of test two (Figure 1.10). Figue 1.21 depicts the

stress invariant ratio, Q/P versus local e bar (Ev EH) for specimen three

(Figure 1.11). The latter results are only presented to denote the excellent

reproducibility of the tests (Figures 1.19 versus 1.21). Discussion of

25
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anisotropy influence in CTC tests due to prior hydrostatic loading is delayed

until virgin CTC loading is presented in the next section.

1.5.2 Conventional Triaxial Compression

Since the first year's effort (Seereeram, McVay, and Linton, 1985)

involved conventional monotonic compression tests to characterize strength in

both the compression and extension space, the triaxial compression tests

reported herein fall within two categories: 1) cyclic CTC at only one

constant cell pressure and axial load, and 2) cyclic CTC at several different

cell pressures and axial loads. The purpose of such a series of tests were

sixfold: investigate specimen end effects (uniform deformation field),

stress-induced anisotropy, growth of the yield surface and cyclic hardening

(see Chapter 3), generate data to compare to other representations of the

moving wheel stress path (Section 1.3.3), and study the influence of stress

state on the elastic response.

Presented first are the cyclic CTC tests at a constant cell pressure of

~ 30 psi (206 kPa) and initial void ratio of 0.67. Figures 1.22 - 1.24 and 1.25

- 1.34 are the results of two such tests. The former test employed only the

macro measuring system without the micro monitoring system (OCDTs) to

investigate the effects, if any of the DCDT brackets. Comparison of Figures

1.22 vs. 1.25 and Figures 1.23 vs. 1.30 reveals that there was only a slight

discrepancy of approximately 10% in measured response. This difference is

readily attributed to the different initial specimen conditions, i.e. 5

uniformity of specimen, initial void ratios, etc., and not to the OCOT

brackets. The influence of specimen end effects were investigated through the

micro and macro measurements of Figures 1.27 and 1.28. In comparison of the

axial strains for a particular principal stress difference, Q (a v - a H one

sees that there is approximately a 10% difference in strain values which is
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reasonable considering the earlier reported reproducibility results. If one

were to compare the local and macro volumetric strains versus deviatoric

strains, v (e H) , one would readily see that the macro response both

lags the micro response as well as averages out the peaks. Si nce membraneI
penetration isn't a possible issue (constant cell pressure), this latter

difference can only be attributed to frictional effects (between end caps and

the soil), and or nonuniform soil specimens. Given the earlier reported]

D11-specimen difference (i.e. nonuniforinities), the latter variations were

attributed to end effects; evident in the lateral horizontal strain

restrictions of the end caps shown in the correlation of Figures 1.31 and

1.32. Scrutiny of the figures reveals the mid points of the specimen are

expanding outward at a faster rate than the extremities, i.e. end cap

effects. However, the difference is only 15% between the two measuring

systems, suggesting that the deformation fields are only slightly nonuniform

and are quite acceptable for the model development undertaken in Chapter 3.

KK These latter dispartities could be improved upon, if one were to use

enlargened caps with a greased membrane separating the soil from the platens.

The study of stress induced anisotropy from prior loading initiated with

a comparison of Figures 1.19 (cyclic HC followed by CTC) with 1.25 (virgin

CTC). Scrutiny of the figures reveal that the agreement prior to cyclic

loading in Figure 1.25 is quite close. The latter correlation is surprising,

considering the stress-induced anisotropy effects which were noted during the

hydrostatic portion of the loading, Figure 1.13. Not as surprising is the

variation in strength as a consequence of cyclic loading as given in Figures

1.19 versus 1.25. Similar behavior is noted in the macro measurements

recorded in Figure 1.26. This increase in strength is a consequence of a

decrease in void ratio resulting from volumetric compression, Figures 1.23 and
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1.29. As was found for the cyclic HC tests (Figure 1.13) significant

anisotropy in strains were noted for the cyclic portion of the CTC, Figures

1.33 and 1.34. Also from the figures, one sees a significant buildup of axial

*[ strains with minimal change in horizontal strains (opposite of cyclic HC,

Figure 1 As a.esult, the plastic deviatoric strain (see Chapter 3) rate

tensor, e ( is rotating and becoming more vertically inclined in

v H
- -principal stress space than its virgin counterpart. The latter's influence on

other stress path loadings is presently unknown.

The second phase of the laboratory tests reported herein is the study of

the evolution of both the plastic and elastic modulus (see Chapter 3) with

initial mean stress. Figures 1.35 - 1.36, 1.37, and 1.38 - 1.43 depict the

stress-strain characteristics of Reid Bedford which was cyclically loaded to

four different levels of deviatoric stress, Q (av - H), at initial cell

pressures of 5 psi (34 kPa), 10 psi (69 kPa), 20 psi (138 kPa), 30 psi (207

kPa), and 40 spi (276 kPa). Figures 1.35 and 1.36 which present deviatoric

stress, Q, versus axial and deviatoric, E (Ev - EH) ' strains were performed

on a specimen without any micro measuring system, DCDTs, attached to the

sample. The results in Figure 1.37 are from a repeat examination of the prior

loading history with the exception of the deletion of the last initial mean

state. Scrutiny of Figures 1.35 and 1.37 reveals the reproducibility of the

testing technique to be quite good. However, study of the individual data

points discloses a fluctuating response, especially in the cyclic regions.

The latter response makes it extremely difficult to obtain material

parameters. For instance the elastic shear modulus, G, is usually obtained

from at CTC test, and in particular the unloading phase of cyclic phase as

shown in Figure 1.36. Consequently, another test, Figures 1.38 - 1.43, was

performed which employed both the DCDT monitoring system and the standard
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approach, burettes and a dial gauge attached to the piston. Evident from a

comparison of Figures 1.38 with 1.39, and 1.41 with 1.42, is that the micro

system, DCDTs, is a far superior system to the conventional approach.

Unfortunately, in this series of tests the macro response could not be

compared to the local behavior due to membrane effects discussed earlier (see

1.5.1)

Study of the stress-strain behavior for the different cell pressures

IZ reveals that if one were to normalize Q with respect to the initial mean

S-stress then all results would be identical. From a plasticity viewpoint (see

Chapter 3), the above suggests that the yield surface (separates elastic from

plastic behavior) is contracting with the stress point and that the plastic

modulus for virgin loading is independent of mean stress. An important

finding, and one which will be expanded on in the model development of Chapter

3.

The final test reported on is the standard cyclic conventional triaxial

compression test (CTC) which is used to predict permanent deformation from a

passing moving wheel. The local (DCDTs) vertical strain versus deviatoric

stress, Q (av - aH) is presented in Figures 1.44 and 1.45 for one hundred

replicate axial load applications. The latter figure is an expanded view of

the former. Evident from the figures is the significant buildup of permanent

axial strain due to cyclic loading.

1.5.3 Triaxial Moving Wheel Representation

As has been noted by previous research (Seereeram, McVay and Linton,

, .1985), the standard cyclic CTC stress path isn't the true representation of a

,* passing moving wheel. For instance, it has been found that approximately one

third of the maximum deviatoric stress occurs within extension stress space,

i.e. principal stress direction aligned less than 45 degrees from the

*.I' 57
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horizontal. Consequently, the tests reported herein were conducted to study
the influence of entering the extension stress space on the maximum permanent

strains, and to examine the suitability of the triaxial device in

characterizing the moving wheel stress path.

Presented in Figure 1.46 is the P, mean stress ((av + 2aH)/ 3), versus

Q, deviatoric stress (a - aH) , representation of a moving wheel. The pathv H)
from points A to D represents the stress state within the base material as the

wheel approaches approximately three radii from the point of interest. At

this distance the major principal direction is aligned closer to the vertical

than the horizontal, resulting in a jump to compression space, Path D-B. Path

B-C represents the substantial increase in vertical stress as the wheel

approaches the point with minimal change in the horizontal stress. It should

be clearly understood that in an actual moving wheel, the point undergoes a

continuous rotation of principal stress which can only occur if shear

tractions are applied to the specimen. Unfortunately the triaxial device is

incapable of supplying such stresses and as will be seen the results are

extremely adverse.

Presented in Figure 1.47 is the deviatoric stress, Q, versus the axial

strain for the triaxial stress path discussed above. Evident from the cyclic

response is that there is little permanent strain buildup, and its magnitude

is significantly less than that reported in Figure 1.44 (Path A-B-C in Figure

1.46) i.r. the standard (increase in only axial load) representation of a

moving wheel. The permanent volumetric strain for Path A-D-B-C is however

approximitely 60% greater than Path A-B-C. Ishihara (1983) performed a moving

wheel representation in a hollow cylinder device (allows the application of

shear traction to specimen, see Chapter 3) and compared it to the standard

conventional test, Path A-B-C. His correlation revealed that approximately
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three times as much volumetric and axial strain was developed in the hollow

cylinder characterization as from the Standard CTC Path A-B-C. Consequently,

it was recognized that excursions into the extension space as in Path A-D-B-C

reoriented the soil's fabric from a volumetric standpoint, (similar to the

hollow cylinder results) but the permanent axial stain was not increasing due

to the fact that when most of the volumetric alterations were occurring, the

axial stress wasn't increasing.

This was further verified in the triaxial device through the test Path A-

D-A-B-C reported in Figure 1.48. Scrutiny of the figure reveals that there is

a degradation (decrease) of permanent strain; however the permanent volumetric

strain of the test was approximately 3 times that reported for stress Path A-

B-C. This compares quite favorably with the hollow cylinder results of

Ishihara (1983); unfortunately the axial response for this type of loading was

quite adverse.

The results of Paths A-D-B-C and A-D-A-B-C are easily differentiable in

terms of both the change in the soil's fabric and the applied stress paths.

Along Paths A-D for both tests, the lateral stress increases, resulting the

rearrangement of the major particle contact directions more towards the

horizontal (requires particles to rotate and slide past one another, denser

arrangement). However for Paths D-A-B and D-B, the major particle contact

direction switches (this time from the horizontal to vertical); since the

confining stress is decreasing mean pressure is also decreasing) for Paths D-

A-B, the particles are free to rotate and slide (densify) into the necessary

point contact alignment, whereas for Path D-B the mean pressure is constant

and particle sliding (denser configuration) is limited.

This would also explain the soil's behavior under a moving wheel or a

hollow cylinder test: applied shear tractions in combination with normal
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stresses, result in substantial particle sliding and realignment, leading to

denser specimens (volumetric compression) as well as larger axial permanent

strains (normal stresses are increasing). Consequently, the representation of

a moving wheel in a triaxial device is not recommended, but further research

into the study of the relationship between a soil's fabric and macro

measurements (stress and strain) in the hollow cylinder device is warranted.
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CHAPTER 2

FUNDAMENTALS OF CONTINUUM MODELLING

2.1 Stress-Strain Equations and Constitutive Theory

To solve statically indeterminate problems, the engineer utilizes the

equations of equilibrium, the kinematic compatibility conditions, and a

knowledge of the load-deformation response (or stress-strain constitution) of

the engineering material under consideration. As an aside, it is useful to

remind the soils engineer of two elementary definitions which are not part of

the everyday soil mechanics vocabulary. Kinematics is the study of the motion

of a system of material particles without reference to the forces which act on

the system. Dynamics is that branch of mechanics which deals with the motion

of a system of material particles under the influence of forces, especially

those which originate outside the system under consideration.

For general applicability, the load-deformation characterization of the

solid media is usually expressed in the form of a constitutive law relating

the force-type measure (stress) to the measure of change in shape and/or

volume (strain) of the medium. A constitutive law therefore expresses an

exact correspondence between an action (force) and an effect (deformation).

The correspondence functional--it is a mathematical representation of the

physical processes which take place in a material as it passes from one state

of equilibrium to another (Jain, 1980). This is an approriate point to

_interject and to briefly clarify the meaning of another word not commonly

encountered by the soils engineer: functional.

Let us consider a sand mass which contains particle P and extend the

discussion to include M discrete granules (Pi, i = 1,2,...,M). Say the body

of sand was subjected to a system of boundary loads which induced a motion of
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or conversely,

kl : Dklij Cij ' (2.1.4)

where the superposed dot above the stress and strain tensors denote a

differentiation with respect to time. In these equations, C and D are now

tangent constitutive tensors. The terms and are the stress rate and

strain rate respectively.

If the "step by step" stress-strain model is further idealized to be

insensitive to the rate of loading, the incremental relationship may be

written as:

daij : Cijkl dEkl, (2.1.5)

or inversely

dckl = Oklij dij' (2.1.6)

where da and de are the stress increment and strain increment respectively.

Only rate-independent constitutive equations will be considered here in.

In the formulation of generalized, rate independent, incremental stress-

strain models, the objective is one of the identifying the variables that

influence the instantaneous magnitudes of the components of the stiffness

(C) or compliance (q) tensors. Such a study bears resemblance to many others

specialized disciplines of civil engineering. The econometrician, for

instance, may determine by a selective process that the following variables

influence the price of highway construction in a state for any given year:

cost of labor, cost of equipment, material costs, business climate, and a host

of other tangible and intangible factors. The soils engineer, perhaps using

the econometrician's techniques of regression analysis and his personal
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4.

significant, but the econometrician uses variables which may frequently be

intangible. Therefore, in the selection of constitutive variables (such as

stress and strain) and in the actual formulation of the stress-strain

equations, certain physical notions (leading to mathematical constraints) must

be satisfied. These conditions are embodied in the so-called axioms or

principles of constitutive theory. An axiom is well-established basis for

theoretical development. Since geotechnical engineers are, for the most part,

interested in isothermal processes, the principles linked to thermomechanical

behavior are suppressed in the sequel.

The Axiom of Causality states that the motion of the material points of a

body is to be considered a self-evident, observable effect in the mechanical

behavior of the body. Any remaining quantities (such as the stress) that

enter the entrophy production and the balance equations--i.e., the equations

of conservation of mass, balance of momentum, and conservation of energy--are

the causes or dependent variables. In other words, there can occur no

deformation (effect) without an external force (cause).

The Principle of Determinism is that the stress in a body is determined

by the history of the motion of that body. This axiom excludes the dependence

of the stress at a point P on any point outside the body and on any future

events. This phenomenon is sometimes referred to as the Principle of

Heredity.

In the purely mechanical sense, the Axiom of Neighborhood or Local Action

rules out any appreciable effects on the stress at P that may be caused by the

motion of points distant from P; "actions at a distance" are excluded from

constitutive equations.

GDuring the discussion of stress and strain, it was made quite clear that

the tensor measures should be independent of the perspective of the
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sliding and rolling velocities between particles. These local strains are

much larger than the overall (continuum) strain. The magnitude of the

generated strain will, as mentioned before, depend on the composition, void

ratio, anisotropic fabric, past stress history, and the stress increment.

Composition is a term used in soil mechanics to refer to the average particle

size, the surface texture and angularity of the typical grain, the grain size

distribution, and the mineral type.

Figure 2.1 illustrates typical qualitative load-deformation response of

loose and dense soil media subject to two conventional laboratory stress

paths: hydrostatic compression, and conventional triaxial compression. Figure

2.2 shows these paths together with an assortment of other 'triaxial' stress

paths used for research as well as routine purposes. In this context, note

that the adjective 'triaxial' is somewhat ambiguous since this particular test

scenario dictates that the circumferential stress always be equal to the

radial stress. The stress state is therefore not truly triaxial, but

biaxial. As we can gather from Figure 2.1, the stress-strain behavior of soil

is quite complicated, and in order to approximately model real behavior,

drastic idealizations and simplifications are necessary. More complex details

of soil response are mentioned in Chapter 3.

The major assumptions in most present idealizations are that: a) soil

response is independent of the rate of loading, b) behavior may be interpreted

in terms of effective stresses, c) the interaction between the mechanical and

thermal processes are negligible, and d) the strain tensor can be decomposed

into an elastic part (e) and a plastic conjugate (EP) without any

interaction between the two simultaneously occuring strain types,

= + , (2.2.1)
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NAME OF TEST Standard DECITO

Conventional Triaxial DeintionA- 0 ~ >

Compression T A -aA0-a 1Acr>0

Hydrostatic Compression H C A 0-1 X A -r = A (T > 0

Conventional Triaxial CE Ar OZ>0;&r
ExtensionCT oaZOoY O

Mean Normal Pressure TC 0, K+ AOZ 0Y =0
Triaxial Compression a 0-Y> ao0 (= a 0"Z

Mean Normal Pressure T E AO3 + =()+70

Triaxial Extension A0,X =A(z>A0y

Reduced Triaxial RC AX=0z0 0
Compression RT

Reduced Triaxial RE~ )<,A~~~
Extension

TC
CTC .....

II

2

rET

Figure 2.2 Typical stress paths used to investigate the stress-
strain behavior of soil spTien inPte traxi
enviromn
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I
or in incremental form,

de = dee + dep . (2.2.2]

The elastic behavior (Ze or dee) is modeled within the broad framework

of elasticity theory, while the plastic part (ZP or dep) is computed from

plasticity theory. Both these theories will be elaborated later in this

chapter.

With the introduction of the strain decomposition into elastic and

plastic components, it is now important to emphasize the difference between

irreversible strains and plastic strains for cyclic loading on soils.

Consider a uniaxial cyclic test consisting of a virgin loading, an unloading

S back to the initial hydrostatic state of stress, and a final reloading to the

previous maximum deviatoric stress level. During the first virgin loading

both elastic and plastic strains are generated, and these components may be

calculated using an elastic and a plastic theory respectively. If at the end

of this segment of the stress path we terminate the simulation and output the

total, elastic, and plastic axial strains, one may be tempted to think that

the plastic component represents the irrecoverable portion of the strain.

However, when the stress path returns to the hydrostatic state, the hysteresis

loop in Figure 2.3 indicates that reverse plastic strains are actually

generated on the unload and a (small) portion of the plastic strain at the end

of the virgin loading cycle is, in fact, recovered. This is an illustration

of the Bauschinger effect (Bauschinger, 1887). Therefore, for such a closed

Fstress cycle, the total strain can more generally be broken down into the

three components:

' E = Ep  + Ep  + E,
~ i rrev rev - I

where EP is the irreversible plastic strain, E P is the reverse plastic~irrev -rev

strain, and as before Ce denotes the elastic strain, which is by definition
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recoverable. Some complicated models of soil behavior, such as the Prevost

model (Prevost, 1975), allow for reverse plastic strains on such "unloading"

P paths. However, ignoring this aspect of reality, as is done in Chapter Three,

can lead to very rewarding simplificatons.

Three broad classes of continuum theories have evolved in the development

~ and advancement of soil stress-strain models (Cowin, 1978): 1) the

kinematically ambiguous theories, 2) the phenomenological theories, and 3) the

microstructural the tes.

The kinematically ambiguous hypotheses employ the stress equations of

equilibrium in conjunction with a failure criterion to form a system of

equations relating the components of the stress tensor. This category is

referred to as kinematically ambiguous because displacements and strains do

not appear in and are therefore not computed from the basic equations of the

theory. They assume the entire medium to be at a state of incipient

yielding. A modern example of this type of formulation can be found in Cambou

(1982).

A phenomenological continuum theory endeavors to devise constitutive

relations based on experimentally observed stress-strain curves. It is

presently the most popular class of the theories and it concentrates on the

macroscopically discernable stress and strain measures. This theory does not

~ inquire very deeply into the mechanisms which control the process of

deformation. A controversial assumption of these phenomenological continuum

theories, as applied to granular media, is that the laboratory tests, such as

the standard triaxial test, achieve homogenous states of strain and stress.

Many researchers are now seeking the answer to the question of when

j bifurcation of the deformation mode becomes acute enough to render
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interpretation of the supposedly "homogenous state" data troublesome (see, for

example, Lade, 1982, and Hettler et al., 1984).

Microstructural theories attempt to incorporate geometric measures of

local granular structure into the continuum theory. Local granular structure

is also called fabric, which is defined as the spatial arrangement and contact

areas of the solid granular particles and associated voids. For clarity,

fabric is subdivided into isotropic fabric measures (such as porosity,

density, etc.) and anisotropic fabric measures (which are mentioned in the

next section). In this report, unless otherwise stated, the word fabric

refers to anisotropic fabric. Perhaps the best known microstructural

formulation is that proposed by Nemat-Nasser and Mehrabadi (1984).

2.3 Anisotropic Fabric in Granular Materials

2.3.1 Introduction

The fabric of earthen materials is intimately related to the mechanical

processes occuring during natural formation (or test sample preparation) and

the subsequent application of boundary forces and/or displacements. Fabric

evolution can be examined in terms of the deformations that occur as a result

of applied tractions (strain-induced anisotropy), or the stresses which cause

rearrangement of the microstructure (stress-induced anisotropy). Strains are

influenced to some extent by the relative symmetry of the applied stress with

respect to the anisotropic fabric symmetry (or directional stiffness). If

straining continues to a relatively high level, it seems logical to expect

that the initial fabric will be wiped out and the intensity and pattern of the

induced fabric will align itself with the symmetry (or principal) axes of

stress. Before introducing and discussing a select group of microscopic

fabric measures, some of the commonly encountered symmetry patterns, caused by

combined kinematic/dynamic boundary conditions, will be reviewed.
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2.3.2 Commnon Symmnetry Patterns

Triclinic symmnetry implies that the media possesses no plane or axis of

symmetry. This fabric pattern is produced by complex deformations. Gerrard

(1977) presents a simple example of how this most general and least symmetric

system may arise: consider the sketch in the upper left hand corner of Figure

2.4, triclinic symmnetry develops as a result of the simultaneous application

of compression in direction 1, differential restraint in directions 2 and 3,

and shear stress components acting in directions 2 and 3 on the plane having

axis 1 as its normal.

Monoclinic symmnetry is characterized by a single plane of symmetry. Any

two directions symmetric with respect to this plane are equivalent. An

example of this symmnetry group is shown in the lower left of Figure 2.4. The

concurrent events leading to it are compression in direction 1, no deformation

in the 2 and 3 directions, and a shear stress component acting in the

2-direction and on the plane with axis 1 as its normal.

A slight modification of the previous example permits a demonstration of

a case of n-fold axis symmnetry or cross-anisotropy. Exclusion of the shear

stress component causes an axis of fabric symmetry to develop such that all

directions normal to this axis are equivalent, bottom right of Figure 2.4.

The orthorhombic symmetry group can best be described by bringing to mind

the true triaxial device. Here for example (top right of Figure 2.4), three

mutually perpendicular planes of symumetry are produced by normal stresses of

different magnitudes on the faces of the cubical sand specimen.

- - Lastly, the rarest natural case is spherical symmetry or material

isotropy which implies that all directions in the material are equivalent.

However, because of its simplicity, isotropy is a major and a very common
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simplifying assumption in many of the current representations of soil

behavior.

2.3.3 Fabric Measures

The selection of the internal variables, qn, to characterize the

mechanical state of a sand medium (see Equation 2.1.7) has been a provocative

7subject in recent times (Cowin and Satake, 1978; and Vermeer and Luger,

1982). There is no douot that the initial void ratio is the most dominant

geometric measure, but as Cowin (1978) poses: "Given that porosity is the

first measure of local granular structure or [isotropic] fabric, what is the

best second measure of local granular structure or [anisotropic] fabric?"

Trends suggest that the next generation of constitutive models will include

this second measure. It is therefore worthwhile to review some of these

variables.

*An anthropomorphic approach is perhaps most congenial for introducing the

reader to the concept of anisotropic fabric in granular material. Let us

assume for illustrative purposes that, through a detailed experimental

investigation, we have identified a microscopic geometric or physical measure

(say variable X), which serves as the secondary controlling factor to the void

ratio in interpreting the stress-strain response of sand. Some of the

suggestions offered for the variable X are: 1) the spatial gradient of the

void ratio (Goodman and Cowin, 1972); 2) the orientation of the long axes

of the grains (Parkin et al., 1968); 3) the distribution of the magnitude and

orientation of the inter-particle contact forces (Cambou, 1982); 4) the

distribution of the inter-particle contact normals (see, for example, Oda,

1982); 5) the distribution of branches [note: a branch is defined as the

vector connecting the centroids of neighboring particles, and it is thus
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possible to replace a granular mass by a systems of lines or branches (Satake,

1978)]; 6) the mean projected solid path (Horne, 1964); and 7) mathematical

representations in the form of second order tensor (Gudehus, 1968).

A commander (mother nature) of an army (the set representing the internal

variable of the sand medium) stations her troops (variable X) in a

configuration which provides maximum repulsive effort to an invading force

(boundary tractions). The highest concentration of variable X will therefore

tend to point in the direction of the imposed major principal stress. If the

invading army (boundary tractions) withdraws (unloading), we should expect the

general (mother nature) to keep her distribution of soldiers (X) practically

unaltered. It is an experimental fact that there is always some strain

recovery upon unloading, and this rebound is caused partly by elastic energy

*stored within individual particles as the soil was loaded and partly byJ

inelastic reverse sliding between particles, Figure 2.3. Traditionally, it

K' has been convenient to regard this unloading strain as purely elastic, but in

* reality, it stems from microstructural changes due to changes of the fabric

and should be considered a dissipative thermodynamically irreversible process

(Nemat-Nasser, 1982). Returning to our anthropomorphic description, we can

therefore say that the general (mother nature) has a intrinsic command to1

slightly modify the arrangement of her troops (X) once the offensive army

(boundary tractions) decamps. The configuration of the defensive forces .

.4 (distribution of X) after complete or partial withdrawal of the aggressor

(complete or partial removal of the boundary loads) still, however, reflects

* the intensity and direction of the earlier attack (prior application of the

system of boundary loads). This represents an induced fabric or stress

induced anisotropy in the granular material.
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We can create additional scenarios with our anthropomorphic model to

illustrate other features of fabric anisotropy. During the initial placement

of the forces (initial distribution of the variable X during sample

preparation or during natural formation of the soil deposit) under the

general's commuand, there is a bias in this arrangement which is directly

related to the general 's personality (gravity as a law of nature). ThiF is

the so-called inherent anisotropy (Casagrande and Carillo, 1944) of soil which

differs from the stress-induced anisotropy mentioned previously. Say the

invading army (boundary tractions) attacks the defensive fortress (sand mass)

with a uniform distribution of troops (uniform distribution of stress

vectors), we will expect maximum penetration (strain) at the weakest defensive

ILMM locations (smallest concentration of X), but our rational general (mother

nature) should take corrective measures to prevent intrusion by the enemy

~ forces (boundary tractions) through the inherently vulnerable sites (points of

initially low X concentration). We can relate this situation to the effect of

increasing hydrostatic pressure on an inherently cross-anisotropic sand

specimen; the results of such a test carried out by Parkin et al. (1968)

indicate that the ratio of the incremental horizontal strain to incremental

vertical strain decreases from about 6 to 2.5. Increasing the hydrostatic

pressure decreases the degree of anisotropy, but it does not completely wipe

out the inherent fabric. We may infer that the general (mother nature) cannot

reorient her forces at will since he is faced by the annoying internal

constraints (particles obstructing each other) which plague most large and

* complex organizations (the microscopic world of particles sliding and rolling

over each other).

It may seem logical to assume that if the demise of anisotropy is

inhibited in some way, then so is its induction, but experimental evidence
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reported by Oda et al. (1980) indicates that the principal directions of

fabric (i.e., principal directions of the distribution of X or the second

order tensor representation) match the principal directions of the applied

stress tensor during a virgin or prime loading, even with continuous rotation

of the principal stress axes. There appears to be no lag effect. Data

presented by Oda (1972) describing the evolution of the contact normal

distribution suggests that fabric induction practically ceases once the

material starts to dilate. However, no firm conclusions can be drawn until

many tests have been repeated and verified by the soil mechanics commnunity as

a whole.

2.4 Elasticity

We now turn our attention to the mathematical models used to simulate the

stress-strain response of soil. In this section, the essential features of

the three types of elasticity-based stress-strain relations are summiarized

(Erlngen, 1962): 1) the Cauchy type, 2) the Hyperelastic (or Green) type, and

3) the incremental (or Hypoelastic) type. Although, in the strict sense,

elastic implies fully recoverable response, it is sometimes convenient to

pretend that total deformations are "elastic" and to disregard the elastic-

plastic decomposition set forth in Equations 2.2.1 and 2.2.2. This approach

has some practical applications to generally monotonic outward loading

paths. For cases of unloading and reloading, however, this type of

formulation will fail to predict the irrecoverable component of strain. One

should not be mislead into believing that elasticity theory should be used

N exclusively for predicting one-way loading paths. Even in its most

complicated forms, elasticity theory may fail to predict critical aspects of

stress-strain behavior, many of which can be captured elegantly in plasticity

theory.
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2.4.1 Cauchy Type Elasticity

A Cauchy elastic material is one in which the current state of stress

depends only on the current state of strain. Each stress component is a

single-valued function of the strain tensor,

a ij = fij (e kl) '(2.4.1.1)

where fij are nine elastic response functions of the material. Since the

stress tensor is synnetric, fkl 0 flk and the number of these independent

functions reduce from nine to six. The choice of the functions fij must also

satisfy the Principle of Material Frame Indifference previously mentioned in

section 2.1; such functions are called hemitropic functions of their

arguments. The stress Z is an analytic isotropic function of e if and only

if it can be expressed as (see, for example, Eringen, 1962; p. 158):

"ij=0 8j + 1 eij 2 eim mj (2.4.1.2)

p where 00, 1 and 02 are functions only of the three strain invariants.

For a first order Cauchy elastic model, the second order strain termas

- vanish (€2 = 0) and €0 is a linear function of the first strain invariant

C~mm'

Iij= (a 0 + a1 emm ) 8ij + '2 ij (2.4.1.3)

where a0' all a are response coefficients. At zero strain, a0 6ij is the

initial spherical stress. Higher order Cauchy elastic models can be

formulated by letting the response functions 0,' $1, and s2 depend on strain

invariant polynomials of corresponding order. For example, the second order

Cauchy elastic material is constructed by selecting as the response functions

"a1: + a2 (Fmm) 2+ a3 (1 ij i)

01 = a4 + a5 mm

W and

2 ."
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where a,, a2 ,..., a6 are material constants (Desai and Siriwardane, 1984).

An alternative interpretation of the first order Cauchy model is

presented in order to show the link between the elastic bulk and shear moduli

(K and G respectively) and Lame's constants (r and 4).For this material

cl assificati on,

ij - Cijkl kl'

where the components of Cijkl are each a function of the strain components, or

if isotropy is assumed, the strain invariants. Since both ij and ekl are

* symmetric, the matric Cijkl is also symmetric. A generalization of the second

order tensor transformation formula to its fourth order analogue produces

CIjkl = Qip Qjq Qkr Qls Cpqrs (2.4.1.4)

as the transformation rule for the "elastic" stiffness tensor C. With the

isotropy assumption, the material response must be indifferent to the

orientation of the observer, and hence we must also insist that C be equal to

C'. A fourth order istropic tensor which obeys this transformation rule can

be constructed from Kronecker deltas 6 (see, for example, Synge and Schild,

1949, p. 211); the most general of these is

Vr,

Cijkl = r86ij 8kl + 6ik 6jl + V 6 ii 6jk (2.4.1.5)

where r, 4, and v are invariants. From the symmetry requirement,

Cijkl = Cijlk, (2.4.1.6)

-." or

"f "r 6 +1 V 6 8i +6oj 6 kl + 'ik 6jl l jk

ri 1k ii jk + 6ik 6jl, (2.4.1.7)

and collecting terms,

- v) (6ik 6 j - 6il 6j ) =0 (2.4.1.8)

which implies that 4 = v. With this equality, Equation 2.4.1.5 simplifies to
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I.

I C~ijkl = 1 kl + (6ik 6jl + ii j k)  2419

I m

where r and ,L are Lame's elastic constants.

The incremental form of the first-order, istropic, elastic stress-strain

' relation is therefore

d r6. 6 + I (6i 6. i6 l . )d
.3 ij kl ik jl + 6ii 6jk )  d dkl

=r 6 ij dcm + 2 P deij (2.4.1.10)

Multiplication of both sides of this equation by the Kronecker delta 6

results in

da kk 3 3rde M+ 2 L dcmm (2.4.1.11)

or

dkk3 dcmm K =r + 2

where K is the elastic bulk modulus.

Substituting the identities

d .ij dsi. + 'd 6
3 13 7 kk ii

and

d ij deij + dkk 6ij

into Equation 2.4.1.10 results in

d..+1 6 r 6.. de 2 i (de~+ - de~ 6~~dsij + 7 d ckk ij mm ij + 1 kk ij

and using Equation 2.4.1.11 in this expression shows that
U dsij /2 deij G = 4 , (2.4.1.13)

where G is the elastic shear modulus.
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Combining Equations 2.4.1.12 and 2.4.1.13 gives a more familiar form of

the isotropic, elastic stiffness tensor, namely

Cijkl -(K - G)6.ij 6k +'G (&ik 6j, + 6 il 6jk )  (2.4.1.14)

Many researchers have adapted this equation to simulate, on an

incremental basis the non-linear response of soil; they have all essentially

made K and G functions of the stress or strain level. Some of the better

known applications can be found in Clough and Woodward, 1967; Girijavallabhan

and Reese, 1968; Kulhawy et al., 1969; and Duncan and Chang, 1970.

2.4.2 Hyperelasticity or Green Type Elasticity

Green defined an elastic material as one for which a strain energy

function, W, (or a complementary energy function, 9) exists (quoted from

Malvern, 1969, p. 282). The development of this theory was motivated by a

need to satisfy thermodynamic admissibility, a major drawback of the Cauchy

elastic formulation. Stresses or strains are computed from the energy

functions as follows:

ij = W ' (2.4.2.1)
13

and conversely,

Sij : - " (2.6.2.2)
13

For an initially isotropic material, the strain energy function, W, can

be written out in the form (see, for example, Eringen, 1962) -,

W W (il 13) AO + Al I1 + A2 12 + A3 I2 + A4 11+ 3-
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A I +A A14 +A121+

A5  1 12 6 13 + 7  1~ + 8  1i 2~

A9 1 113+ A10 1 , (2.4.2.3)

where 11, 12, and 13 are invariants of e

- 1
£kk,12 **~ e ~ 13= ekmFEi ek mn

and Ak (k = 0,2..,10) are material constants determined from curve fitting.

The stress components are obtained by partial differentiation,

*.* = W I1 8W 612 N 813 (2.4.2.4)
13 -T -S-_ ar ~F_.+-r e

1 i j 2 1 j 3 ij

I 61ij + (2 Eij + 03 eim Cmj (2.4.2.5)

where Oi (i = 1,2,3) are the response functions which must satisfy the

condition 80ilj = 0j/81i in order to guarantee symmetry of the predicted

stress tensor.

Different orders of hyperelastic models can be devised based on the

powers of the independent variables retained in Equation 2.4.2.3. If, for

instance, we keep terms up to the third power, we obtain a second-order

hyperelastic law. These different orders can account for various aspects of

soil behavior; dilatancy, for instance, can be realistically simulated by

including the third term of Equation 2.4.2.3. Green's method and Cauchy's

method lead to the same form of the stress-strain relationship if the material

is assumed to be isotropic and the strains are small, but the existence of the
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strain energy function in hyperelasticity imposes certain restrictions on the

choice of the constitutive parameters. These are not pursued here, but the

interested reader can find an in-depth discussion of these constraints in

Eringen (1962). Also, detailed descriptions--including initialization

procedures--for various orders of hyperelastic models can be found in Saleeb

and Chen (1980), and Desai and Siriwardane (1984).

2.4.3 Hyp..elasticity or Incremental Type Elasticity

This constitutive relation was introduced by Truesdell (1955) to describe

a class of materials for which the current state of stress depends on the

current state of strain and the history of the stress 2t (or the stress

path). The incremental stress-strain relationship is usually written in the

form

d o , do (2.4.3.1)

where f is a tensor valued function of the current stress a, and the strain

increment de. The principle of material frame indifference (or objectivity)

imposes a restriction on f: it must obey the transformation

fL(a,de) QT = (Q dQT, D QT) (2.4.3.2)

for any rotation Q of the spatial reference frame. When t satisfies this

stipulation, it is, as mentioned in the previous section, a hemitropic

function of a and de. A hemitropic polynomial representation of f is (see,

for example, Eringen, 1962, p. 256)

d2' (!Z, d ) = a 0 tr(dE) Ade I + a2 tr(d) 2' +

a 3 tr(2' d ) A + a4 (d e' + a' d) + 5 tr(de) ~

2a tr(2' dZ) 2' + a tr(2 de) 6+

90



2 2 +~ 2 + e) + a tr(g' de) 2

1 2 a2 (d a29-

I 0 tr( '2 de) a' + a11 tr( '2 de ) a'2 (2.4.3.3)

where a' is the nondimensional stress .,j24 (pi being the Lame shear modulus of

Equation 2.6.1.10), ak (k = 0,2,..,11) are the constitutive constants and "tr"

denotes the trace operator of a matrix (i.e., the sum of the diagonal

terms). The constants ak are usually dimensionless analytic functions of the

three invariants of a', and these are determined by fitting curves to

experimental results.

Various grades of hypoelastic idealizations can be extracted from

Equation 2.4.3.3. This is accomplished by retaining up to and including

certain powers of the dimensionless stress tensor a'. A hypoelastic body of

grade zero is independent of a', and in this case, the general form simplifies

to

d = (, de) = a0 tr(de) A + a de . (2.4.3.4)

Comparing this equation with the first order Cauchy elastic model (Equation

2.4.1.10) shows that
ra0  = and a= 1

Similarly, a hypoelastic constitutive equation of grade one can be

elicited from the general equation by keeping only the terms up to and

including the first power of a'

da' = f(a, de) = 0 tr(de) 6 + a 
d e + a2 tr(de) a ' +

012
a tr(a' de) 8 + a4 (de a' + a' dE)

By a similar procedure, the description can be extended up to grade two, with

the penalty being the task of fitting a larger number of parameters to the

experimental data. These parameters must be determined from representative



I
laboratory tests using curve fitting and optimization techniques, and it often

leads to uniqueness questions since it may be possible to fit more than one

set of parameters to a given data set.

Romano (1974) proposed the following special form of the general

hypoelastic equation to model the behavior of granular media:

dij = [a0 dem + a3 "pq d pq] 6ij + 1 dcij +

C 2 dem + a6 arsde rs ]a (2.4.3.5)

This particular choice ensures that the predicted stress increment is a linear

function of the strain increment; in other words, if the input strain

increment is doubled, then so is the output stress increment. Imposing

* linearity of the incremental stress-strain relation is one way of compelling

the stress-strain relation to be rate-independent; a more general procedure

for specifying rate indepedence will be described in the section on plasticity

theory.

Davis and Mullenger (1978), working from Romano's equation, have

developed a model which can simulate many aspects of real soil behavior.

Essentially, they have used well-established empirical stress-strain relations

and merged them with concepts from plasticity to arrive at restrictions on the

interdependency of the constitutive parameters.

2.5 Plasticity

Having outlined the theories used to compute the elastic, or sometimes

pseudo-elastic component d e of the total strain increment de, the next topic

deals with the computation of its plastic conjugate deP. This section

prefaces the mathematical theory of plasticity, a framework for constitutive

laws, which until 1952 (Drucker and Prager, 1952) remained strictly in the

domain of metals. Over the past three decades, the role of elastic-plastic

constitutive equations in soil mechanics has grown in importance with the

development of sophisticated computers and computer--based numerical
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techniques. These tools have significantly increased the geotechnical

engineer's capacity to solve complicated boundary value problems. The three

main ingredients for these modern solution techniques are computer hardware,

numerical schemes, and stress-strain equations, and, of these, the development

of constitutive laws for soils has lagged frustratingly behind.

The fundamentals of plasticity theory still remain a mystery to many

geotechnical engineers. It is very likely that a newcomer to this field will

find considerable difficulty in understanding the literature, usually written

in highly abstruse language. The chief objective of this section is to

provide some insight into plasticity theory by highlighting the basic .

postulates, with special emphasis on their applicability and applications to

soil mechanics.

In brief, plasticity theory answers these questions:

a) When does a material plastically flow or yield? Or more directly, how do

we specify all possible stress states where plastic deformation starts?

The answer to this question lies in the representation of these stress

states by yield surfaces. Also underlying this discussion are the

definitions of and the possible interpretations of yield.

b) Once the material reaches a yield stress state, how are the plastic

strains computed? And, if the stress path goes beyond the initial yield

surface (if an initial one is postulated), what happens to the original

yield surface (if anything)? The first question is addressed in the

discussion on the flow rule (or the incremental plastic stress-strain

relation), while the second is treated in the discussion on hardening

rules.
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2.5.1 Yield Surface

Perhaps the best starting point for a discussion of plasticity is to

introduce, or rather draw attention to, the concept of a yield surface in

stress space. At the outset, it should be noted that yield is a matter of.4

definition, and only the conventional interpretations will be mentioned in

this chapter. The reader is, however, urged to keep an open mind on this

subject since a different perspective, within the framework of a new theory

for sands, will be proposed in Chapter 3.

Since strength of materials is a concept that is familiar to geotechnical

engineers, it is used here as the stimulus for the introduction to yield

*1~~ surfaces. Figure 2.5 shows a variety of uniaxial rate-insensitive stress-

strain idealizations. In particular, Figures 2.5 (d) and (e) show examples of

perfectly plastic response, and one may infer from this that yield and failure

are equivalent concepts for this simplest idealization of plastic response.

In the calculation of the stability of earth structures, the Mohr-Coulomb

failure criterion is typically used to estimate the maximum loads a structure

can support. That is, when this load is reached, the shear stress to normal

stress ratio is assumed to be at its peak value at all points within certain

* '. zones of failure. This method of analysis is known as the limit equilibrium

method. Using the classification set forth in section 2.2, it is a

kinematically ambiguous theory in that no strains are predicted. Another

commnon method of analysis is the wedge analysis method. This is a trial and

error procedure to find the critical failure plane, a failure plane being a

plane on which the full strength of the material is mobilized and the critical

plane being the one that minimizes the magnitude of the imposed load.

A feature common to both the limiting equilibrium and the wedge analysis

methods is the need to provide a link between the shear and normal stress at
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(G) Nonlinearly elastic (b) Linearly elastic

(C) Nonelastic, or plastic (d) Rigid, perfectly plastic

(e) Elastic, (f)Rigid, (g) Elastic,
Perfectly plastic Work- hardening Work-hardening

Figure 2.5 Rate-independent idealizations of stress-strain
response
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failure. A constitutive law, which is a manifestation of the internal

constitution of the material, provides this information. More generally, the

kinematically ambiguous theories for a perfectly plastic solid must specify

the coordinates of all possible failure points in a nine dimensional stress

space. Mathematically, this is accomplished by writing a failure function or

criterion in the form F(aij) = 0; many well-established forms of the yield
13

function are previewed in the following.

The Mohr-Coulomb frictional failure criterion states that shear strength

increases linearly with increasing normal stress, Figure 2.6. For states of

stress below the failure or limit or yield line, the material may be

considered rigid [Fig. 2.5 (d)] or elastic [Fig. 2.5 (e)]. For a more general

description, it is necessary to extend the two-dimensional yield curve of

Figure 2.6 to a nine-dimensional stress space. Although such a space need not

be regarded as having an actual physical existence, it is an extremely

valuable concept because the language of geometry may be applied with
8*•

reference to it (Synge and Schild, 1949). The set of values

a11, a 12, a13, a21, a 22, a 23, a 31, a 32, and a33 is called a point, and the

variables aij are the coordinates. The totality of points corresponding to

all values of say N coordinates within certain ranges constitute a space of N

dimensions denoted by VN. Other terms commonly used for VN are hyperspace,

manifold, or variety.

Inspection of, say, the equation of a sphere in rectangular cartesian

coordinates (x,y,z),

F(x,y,z) = (x - a)2 + (y - b)2 + (z - c)2 - K2  0

where a, b, and c are the center coordinates and k is the radius, is a simple

way of showing that the nine-dimensional equivalent of a stationary surface in
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RIGID REGION

(c) al + a3

Figure 2.6 Two dimensional picture of Mohr-Coulomb failure
criterion
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stress space may be expressed as:

F(i ) = 0 .(2.5.1.1)

surface in four or more dimensions is called a hypersurface. The7

theoretician must therefore postulate a mechanism of yield which leads

directly to the formulation of a yield surface in stress space or he must fit

a surface through observed yield points.

Rigorously speaking, a yield stress (or point) is a stress state which

marks the onset of plastic or irrecoverable strain and which may lie within

the failure surface. Yield surfaces specify the coordinates of the entirety

of yield stress states. These (not necessarily closed) surfaces bound a

region in stress space where the material behavior is elastic. But an all-

important practical question still looms: How can we tell exactly where

plastic deformation begins? Is the transition from elastic to elastic-plastic

response distinct? At least for soils, it is not that simple a task. The

stress-strain curves continuously turn, and plastic deformation probably

occurs to some extent at all stress states for outward loading paths.

However, for the perfectly plastic idealization, there should be no major

difficulty since the limit states are usually easy to identify.

Among the techniques used to locate the inception of yield are:

a) for materials like steel with a sharp yield point, the yield stress is

usually taken as the plateau in stress that occurs just after the yieldM

point;

b) for soft metals like aluminium, the yield stress is defined as the stress

corresponding to a small value of permanent strain (usually 0.2%);

c) a large offset definition may be chosen which more or less gives the %

* failure stress;
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d) a tangent modulus definition may be used, but it must be normalized if

mean stress influences response; and

e) for materials like sand which apparently yield even at low stress levels,

a Taylor-Quinney (1931) definition is used. This and some of the

alternative definitions are illustrated in Figure 2.7.

Soil mechanicians will identify the Taylor-Quinney definition with the

Casagrande procedure (Casagrande, 1936) for estimating the preconsolidation

pressure of clays.

Defining a yield surface using the methods outlined above usually leads

to one with a shape similar to that of the failure or limit surface. However,

in Chapter 3, an alternative approach will be suggested for determining the

shape of the yield surface based on the observed trajectory of the plastic

strain increment--for sands, these surfaces have shapes much different from

i mthe typical failure or yield surfaces.

* -2.5.2 Failure Criteria

If an existing testing device had the capability to simultaneously apply

the six independent components of stress to a specimen, the yield

. *~function F(aij) = 0 could be fitted to a comprehensive data set.

i '../., Unfortunately, such equipment is not available at present, and most

researchers still rely on the standard triaxial test (Bishop and Henkel,

1962). However, if the material is assumed to be isotropic, as is usually%J r"J"

done, then the number of independent variables in the yield functions reduces

a from six to three; i.e., the three stress invariants or three principal

stresses replace the six independent components of a . In other words,

material directions are not important, only the intensity of the stress is.

Therefore, by ignoring anisotropy, all that the theoretician needs is a

device, like the cubical triaxial device, which can vary
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/ / I YIELD DEFINITIONS:

/ /I MODERATE OFFSET
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SHEAR STRAIN,C

Figure 2.7 Commnonly adopted techniques for locating the yield
stress
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1' 02 and a3 independently.

Another implication of the isotropy assumption is that stress data can be

plotted in a three dimensional stress space with the principal stresses as

axes. This stress space is known as the Haigh-Westergaard stress space (Hill,

1950). Working in this stress space has the pleasant consequence of an

intuitive geometric interpretation for a special set of three independent

stress invariants. In order to see them, the rectangular coordinate reference

system (a1, 029 a3) must be transformed to an equivalent cylindrical

coordinate system (r, e, z) as described in the following.

Figure 2.8 depicts a yield surface in Haigh-Westergaard (or principal)

stress space. The hydrostatic axis is defined by the line

1 2 3 '

* , which is identified with the axis of revolution (z) perpendicular to the plane

at the origin of a polar system. For cohesionless soils (no tensile strenth),

the origin of stress space is also the origin of this axis. The perpendicular

plane is called the deviatoric or octahedral plane and is given by

11 + 02 + a 3 constant

When this constant is equal to zero, the octahedral plane passes through the

orgin of stress space and is then known as a n plane.

If we perform a constant pressure test (paths TC or TE of Figure 2.3),

the stress point follows a curve on a fixed deviatoric plane for the entire

loading. Such stress paths provide a useful method for probing the shape

and/or size of the yield surface's i-plane projection for different levels of

mean stress. Polar coordinates (r, 9) are used to locate stress points on a

given deviatoric plane.

By elementary vector operations, the polar coordinates r, 9. and z can be

correlated to each of the stress invariants /J2 9 9 and II , which are defined
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Yiel SuraceHydrostatic Axis

. .. .. .. Deviatoric Plane

0*'

Tresca

8=-33

von Mises

Deviatoric Plane

Hydrostatic Point

Figure 2.8 V~eld surface representation in Haigh-Westergaard
stress space
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as.

1 =a 11
+ a 22 + a 3 3

J 2 = Sij Sij

J3  Sij sjk Ski

I sin 1. [3,3 3sin -372~
X -21

where

:- ij = ij - Ii ij "

VOther stress invariants of interest used in describing the Haigh-Westergaard

•. -'
stress space are

I 22  22 33 ) + a2 + C2 + a 2 (2.5.2.2)2 = ( 1 1  22 22 33 a11) a2 3  a3 1 + 12

and the determinant of the stress tensor

11 a12 a13

13 a 2 1  a22  a2 3

a31  a32  a3 3  (2.5.2.3)

A measure of the shear stress intensity is given by the radius

r = /(2J 2 ) 2.5.2.4)

from the hydrostatic point on the octahedral plane to the stress point.

The polar angle shown in Figure 2.8 is the same as the Lode angle e) It

provides a quantitative measure of the relative magnitude of the intermediate

principal stress (a2) . For example,

a 2 = a3  (compression test) +0= +300

103



S= 2 (extension tests) + 0 -300

and

"I + 03 = 2 a2 (torsion tests) =0 .

Lastly, the average pressure, an important consideration for frictional

materials, is proportional to the perpendicular distance "d" from the origin

* of stress space to the deviatoric plane;

d = 11 /3 , (2.5.2.5)

where 1, is the first invariant of a

For isotropic materials, the yield function (Equation 2.5.1.1) may

therefore be recast in an easily visualized form (Figure 2.8)

F(I1I /d 2 ' o) = 0 . (2.5.2.6)

Some of the more popular failure/yield criterion for istropic soils and metals

are reviewed in the following.

The much used Mohr-Coulomb failure criteria (Coulomb, 1773) for soils is

usually encountered in practice as:

103)" (ai+ 03) = sin € = k (2.5.2.7)

where € is a constant termed the angle of internal friction. The symbol "k"

is used as a generic parameter in this section to represent the size of yield

surfaces. This criteria asserts that plastic flow occurs when the shear

stress to normal stress ratio on a plane reaches a critical maximum. If the

equations which express the principal stresses in terms of the stress

invariants (Equation 2.5.2.1) are substituted into Equation 2.5.2.7, the Mohr-

Coulomb criteria can be generalized to (Shield, 1955)

IF = 1 sin € + / 2 { sin 0 sin 0 - cos 0 } = 0 (2.5.2.8)
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A trace of this locus on the n plane is shown in Figure 2.8. The surface

plots as in irregular hexagonal pyramid with its apex at the origin of stress

space for non-cohesive soils.

Also depicted in this figure are the well-known Tresca and Mises yield

surfaces used in metal plasticity, Mises (1928) postulated a yield

representation of the form

F = VJ2 - k = 0 , (2.5.2.9)

and physically, this criteria can be interpreted to mean that plastic flow

commences when the load-deformation process produces a critical strain energy

of distortion (i.e., strain energy neglecting the effects of hydrostatic

pressure and volume change).

Tresca (1868), on the other hand, hypothesized that a metal will flow

plastically when the shear stress on any plane through the point reaches a

peak value. By calling to mind the Mohr's circle stress representation, the

radius of the largest circle [(a1 - a3)/2] is the maximum shear stress.

Replacing the principal stresses with the stress invariants gives the

following alternate form for the Tresca criterion:

F = -1 VJ2 [ sin (e + 4 i) - sin (e + 2 i) ] - k = 0

which, upon expanding the trigonometric terms, simplifies to

F = /J2 cos e - k = 0 . (2.5.2.10)

A noticeable difference between the Mises or Tresca criterion and the

Mohr-Coulomb criterion is the absence of the variable I, in the former. This

reminds us that yielding of metals is usually not considered to be dependent

on hydrostatic pressure, as the experiments of Bridgman (1945) have

demonstrated.
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Drucker and Prager (1952) modified the Mises criteria to account for

pressure-sensitivity and proposed the form

F = /J2 - k = 0 .
11 (2.5.2.11)

To match the Drucker-Prager and Mohr-Coulomb yield points in compression space

(a2 = a 3), one must use

k= 2 sine3 = 2 sin €) ,(2.5.2.12)

but, to obtain coincidence in extension space (a1 = a2 )

k = 2 sin (2.5.2.13)

7/3(3+ sin ~

must be specified. Although the development of the Drucker-Prager yield

function was motivated mainly by mathematical convenience, it has been widely

applied to soil and rock mechanics. However, there is considerable evidence

to indicate that the Mohr-Coulomb law provides a better fit to experimental

results (see, for example, Bishop, 1966).

Scrutiny of sketches of the previously defined yield surfaces in

principal stress space (see Figure 2.8) reveals that they are all "open" along

the hydrostatic stress axis. Therefore, for an isotropic compression path, no

plastic strains will be predicted. This contradicts the typical behavior

observed along such paths, Figure 2.1. Recognizing this dificiency, Drucker

et al. (1957) capped the Drucker-Prager cone with a sphere to allow for

plastic yielding for generally outward but non-failure loading paths. The

equation for the spherical cap (of radius k) centered on the origin of stress

space can be derived by rearranging Equation 2.5.2.2,

F(a..) a . - k2  I - 2 12 - k 0 (2.5.2.14)
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As a result of the development of more sophisticated testing devices,

sensing equipment, and data capture units, more reliable and reproducible

stress-strain data is becoming available. This has quite naturally led to the

development of many new mathematical representations of yielding in soils.

Most notably, Lade and Duncan (1975), using a comprehensive series of test

data obtained from a true triaxial device (Lade, 1973), have suggested that

failure is most accurately modeled by the function

F = (13f13) (ll/Pa)m - k = 0 , (2.5.2.15)

where 13 is the third stress invariant defined in Equation 2.5.2.3, Pa is the

atmospheric pressure in consistent units, and m is a constant to model

deviation from purely frictional response. A spherical cap was subsequently

added by Lade (1977) to "close"this "open-ended" function along the

hydrostatic axis.

* Another recent proposal, based on a sliding model, was put forward by

Matsuoka and Nakai (1974). They defined the spatial mobilized plane as the

plane on which soil particles are most mobilized on the average in three

dimensional stress space. Only for special cases when any two of the three

principal stresses are equal does this criterion coincide with the Mohr-

Coulomb criterion. Based on the postulate that the shear/normal stress ratio

on the spatial mobilized plan governs failure, Matsuoka and Nakai have derived

the following failure criterion:

<, F = II 12 - 9 133 - k = 0

9 I3  (2.5.2.16)

The mobilized plane concept is essentially a three-demmensional extension of

i the Mohr-Coulomb criteria that takes into account the relative weight of the

intermediate principal stress.
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Even more recently, Desai (1980) has shown that the Mises, Drucker-

Prager, Lade, and Matsuoka surfaces are all special cases of a general third-

order tensor invariant polynomial he proposed. Using statistical analyses, he

'~. *:found that the failure criterion

F = [1 2 + (I I 1 31/3)] - k = 0 (2.5.2.17)

gave the best fit to experimental data sets on Ottawa sand and an artificial

soil. Research in this field in presently very active, and as more high

quality data becomes available, it is anticipated that even more proposals for

N' failure/yield functions will emerge in the near future.

2.5.3 Incremental Plastic Stress-Strain Relation, and Prager's Theory

A material at yield signals the onset of plastic strain, and this section

describes the computation of the resulting plastic strain increment. By

definition, plasticity theory excludes any influence of the rate of

application of the stress increment on the predicted plastic strain increment,

and as will be shown later, this leads to restrictions on the possible forms

of the stress-strain relation.

In analogy to the flow lines and equipotential lines used in seepage

analysis, the existence of a plastic potential, G, in stress space can be

postulated such that (Mises, 1928)

de?. =A 6G ,A >0 (2.5.3.1)

where A is a scalar factor which controls the magnitude of the generated

%.WINplastic strain increment, and G is a surface in stress space (like the yield

surface) that dictates the direction of the plastic strain increment. More

specifically, the plastic strain increment is perpendicular to the level

surface G(a~ .) 0 at the stress point.
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To get a better grasp of Equation 2.5.3.1, the soils engineer may think

of the function G as a fixed equipotential line in a flow net problem. The

partial derivatives 6G/iaij specify the coordinate components of a vector

pointing in the direction perpendicular to the equipotential. This direction

is, in fact, the direction of flow (along a flow line) of a particle of water

instantaneously at the spatial point. Supplanting now the spatial coordinates

(x,y,z) of the seepage problem with stress axes (ax, ay az), while keeping the

potential and flow lines in place, illustrates the mathematical connection

between the movement of a particle of water and the plastic deformation of a

soil element. The plastic geometrical change of a soil element is in a

direction perpendicular to the equipotential surface G(aij) = 0 . At

governed by Darcy's law; therefore, it is possible to construct a scalar point

function which gives the speed at each location. In an equivalent manner, the

scalar multiplier A in Equation 2.5.3.1 determines the speed (or equivalently,

the magnitude of the incremental deformation) of the soil particle at

different locations in stress space. For example, the closer the stress point

is to the failure line, a larger magnitude of A (with a corresponding larger

* magnitude of dEp ) is expected. Therefore, in the crudest sense, the two

elements of plasticity theory which immediately confront us are: a) the

specification of the direction of the plastic strain increment through a

choice of the function G(aij), and b) the computation of the magnitude

of deP. There are, of course, other important questions to be answered, such

as "What does the subsequent yield surface look like?", and these will be

treated in later sections and the next chapter.

Mises (1928) made the assumption that the yield surface and the plastic

potential coincide and proposed the stress-strain relation
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d j = A (2.5.3.2)
ij

This suggests a strong connection between the flow law and the yield

criterion. When this assumption is made, the flow rule (Equation 2.5.3.1) is

said to be associated and Equation 2.5.3.2 is called the normality rule.

However, if we do not insist upon associating the plastic potential with the

yield function (as suggested by Melan, 1938), the flow rule is termed non-

associated. The implications of the normality rule, it turns out, are far

reaching, and as a first step to an incisive understanding of them, Prager's

(1949) treatment of the incremental plastic stress-strain relation will be

summarized.

The first assumption is designed to preclude the effects of rate of

loading, and it requires the constitutive equation

dep  deP (2, do, 2n)

to be homogenous of degree one in the stress increment da . Recall that

homogeneity of order n ensures that

dc dE (t A dc %) = An dsp (0t da, n) , (2.5.3.3)

where A is a positive constant.

A simple example will help clarify this seemingly complex mathematical

statement. Suppose an axial stress increment of 1 psi produced an axial

plastic strain increment of .01%; this means that if A is equal to 2, the

stress increment of 2 psi (A x I psi) will predict a plastic strain increment :°]

of .02% (A x .01%) . Ideally then, the solution should be independent of the

stress increment, provided the stiffness change is negligible over the range

of stress spanned by the stress increment.
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* The simplest option, which ensures homogeneity of order one, is the

linear form

dP :? Di dkl (2.5.3.4)

where D is a fourth order plastic compliance tensor, the components of which

t t
may depend on the stress history 2t, the strain history t the fabric

parameter, etc., but not on the stress increment da . This is referred to as

the linearity assumption.

The second assumption, the condition of continuity, is intended to

eliminate the possibility of jump discontinuities in the stress-strain curve

as the stress state either penetrates the elastic domain (i.e., the yield

hypersurface) from within or is unloaded from a plastic state back into the

elastic regime. To guarantee a smooth transition from elastic to elastic-

plastic response and vice-versa, a limiting stress increment vector,

d'2
t , tangential to the exterior of the yield surface must produce no plastic

,. ".'! strain. As a consequence, an infinitesimal change of stress, da, added to a

body at yield [i.e., F(Z) - k = 0 is satisfied] gives rise to three

possibilities:

j.% .. ,
a) 6 < 0 + pure elastic response (unloading) (2.5.3.5

?_ " " F :da

b) -d ~ 0 * pure elastic response (neutral loading) (2.5.3.6)

or

,. :i F:da:
c) -d ~ > 0 * elastic & plastic response (loading). (2.5.3.7)
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The notation ":" is the double contraction operator used here to compactly

=m F do .

denote the scalar produce o ij (see, for instance, Malvern, 1969).
," ]j

A further implication of the continuity condition can be deduced by

decomposing an arbitrary stress increment do into its components normal

nt(don ) and tangential (d t ) to the yield surface,

do = dat+ dn

Since the incremental stress-strain relation is linear, we can superpose

the individual effects of dot and don to obtain the combined effect of do

But we know that dot constitutes a neutral loading and generates no plastic

strain. Therefore, plastic loading is attributed only to the normal

component (d n ) of do

P dun =da:n = da:VE/ V (2.5.3.8)

where n is the unit tensor normal to the yield surface, V is a vector

differential operator which means, for example, that for the scalar function-.

F(x,y,z) = 0,

7F = )F it+ Fj. + F k
. ~ 5y o

In his presentation of the restrictions imposed by the uniqueness

condition, Prager (1949) made use of the following boundary value problem:

given the instantaneous mechanical state in a body together with a system of

infinitesimal added surface tractions, find the corresponding stress

increments throughout the body. A reasonable demand is that plasticity theory

predict a unique solution to the problem. But let us assume that the boundary

value problem admits two solutions. Say these two solutions resulted in a
mi

difference between the predicted stress increments at a given point of the

body equal to 7(do), and similarly, differences in elastic and plastic strain
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increments equal to A(dee) and A(dc p ) respectively. Now, since the two

solutions correspond to the same increment of surface tractions on a body of

volume V, the principle of virtual work requires that

SV [ A(da) {A(dze) + A(dEP)} ] dV = 0, (2.5.3.9)

with the integrand being positive definite. By virtue of Hooke's law the

quanity

eA(da):A(de

will always be positive definite so proof of the uniqueness condition is

actually a proof that the quantity

Ad):A(dep)
A(d) : p (2.7.3.10)

is positive definite.

In considering Equation 2.5.3.10, three cases must be examined: a) both

solutions result in unloading, b) both solutions involve loading, and c) one

; solution is an unloading event while the other is a plastic loading process.

For the first case, d p is zero for both instances and Equation 2.5.3.10

vanishes trivially. To investigate the second case, we label the two

(1) (2)
"loading" solutions as da and d 2  and require that the plastic strain

increment be directed such that Equation 2.5.3.10 is always positive. The

limiting scenario occurs when dcg( I) and da(2 ) are both tangential to the

*yield surface but directed in an opposite sense. Therefore, the only

__ .provision which will ensure this is a plastic strain increment directed along

the outward normal to the yield surface--i.e., the normality condition. The

arguments for case 3 parallel those for case 2, and we can conclude that a

sufficient condition for uniqueness of a boundary value problem is that the
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flow rule be associated and that normality of the plastic strain increment

apply,

VF" (2.5.3.11)
ivr

By merging the linearity, the continuity, and the uniqueness conditions--

Equations 2.5.3.4, 2.5.3.8, and 2.5.3.11 respectively--, the flow rule takes

the form

d~p 7F{ 17 - al K> 0(2.5.3.12)
= 1 VFT TVF d

where, for reasons which will become apparent later, the scalar Kp (the

generalized plastic modulus) is used instead of its inverse. Equation

2.5.3.12 is valid only if the stress state resides on a yield

surface [i.e., F(a) = 0] and a plastic loading event is taking

place (n:da > O] . For non-associative flow, Equation 2.5.3.12 is modified

* to

-d1 dP 1 VG VF
E. 1 G} K > 0 (2.5.3.13)

pKp p

where G is the plastic potential, a surface distinct from the yield surface F.

Frequently in the literature on plasticity, the quantity

VF.L = 1 dc}
L.1 {- T  (2.5.3.14)

'p...

is synthesized as a single term and designated the loading function or loading

index "L". With this terminology, the flow rule is then encountered as:

d ij : L m , (2.5.3.15)

where mij are the components of the unit gradient tensor to the plastic

potential G.
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If incremental plastic deformation takes place, the stress point, which

was initially on a yield surface, must move to another plastic state. This

means that the updated stress point must reside on another yield surface or a

transformed version of the initial one. In this chapter, discussion is

restricted to subsequent yield surfaces which evolve from the initial one.

The other option--the multiple yield surface concept--is described in

Seereeram, McVay, and Linton (1985).

During plastic loading, the material remains at yield as it moves from

one plastic state F(c) = 0 to another, F(a + da) = 0. When this requirement

is met, the consistency condition is said to be satisfied. To stay with the

stress point, the yield surface may undergo a size change, or a shape change,

or translate, or rotate, or undergo any combination of these processes. No

change in the initial yield surface is the perfectly plastic idealization: the

yield surface is also the limit surface. In conventional plasticity, changes

in the yield surface occur only when the material undergoes plastic

deformation (n:da > 0) , however in Chapter 3 a new concept is proposed

whereby the yield surface also changes during unloading (2:d< 0)

r. Remembering that the yield surface encloses the elastic (or "stiffer")

region, we may interpret these yield surface transmogrifications as a

specification of how the "hard" region in stress space evolves during

loading. These are the hardening rules of plasticity. Anyone who has ever

bent a wire hanger or a paper clip and then tried to bend it back to its

original shape can attest to the phenomeno- of hardening. Hardening of a

material can also mean that more work per unit volume is required to alter the

plastic state. The implications of this particular interpretation are

profound, and they are treated in the next section.
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2.5.4 Drucker's Stability Postulates

It is now approriate to introduce one of the cornerstones of modern

plasticity theory: Drucker's stability postulates (Drucker, 1950a, 1950b,

1951, 1956, 1958, and 1966). Emanating from these basic postulates is a

classification of material behavior which results in normality of dEp at a

smooth point on and convexity of the yield surface.

The meaning of work hardening in the case of an axial compression test is

simply that the stress is a monotonically increasing function of strain. This

is considered stable response. Drucker (1950a) observed, however, that the

definition of work hardening is not such a simple picture for more general

states of stress and paths of loading where some components of stress may

increase, while others may decrease. There, working from the notion of the

- . stability of simple rigid bodies, he advanced a definition of intrinsic

material stability using the sign of the work done by the addition of and the

addition and removal of a small stress increment. This is commonly referred

to as "stability in the small" to distinguish it from a later postulate heJ

called "stability in the large", wherein a finite disturbance was considered.

Imagine a material element with a homogenous state of stress a and

strain E. Let an external agency, entirely separate and distinct from the

agency which caused the existing state of stress and strain, apply small

surface tractions which alter the stress state at each point by do and produce ~

correspondingly small strain increments dc Next, assume this external agency

slowly removes the added surface tractions, and in the process recovers the

eelastic strain increment dE . In layman terms, a small external load is used

to probe the stability of an existing "system"; if the body "runs away" with

any small probe, or if upon removal of the probe the material rebounds past

its original position, the system is said to be unstable. Stability therefore
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implies that positive work is done by the external agency during the

application of the set of stresses,

da:dE > 0 (2.5.4.1)

•N. and that the net work performed by it over the cycle of application and

removal is zero or postive,

d2:(de - dEe) = da:de p > 0 . (2.5.4.2)

It is emphasized that the work referred to is not the total work done by

all the forces acting, but only the work done by the added set on the

displaLements which result. The latter postulate (Equation 2.5.4.2) can be

rephrased: work hardening means that useful energy over and above the elastic

energy cannot be extracted from the material and the system of forces acting

upon it. If Equation 2.5.4.2 is to hold for any outward

d2, then it is obvious that dep must be normal to the yield surface.

Drucker (1951) extended his postulates by considering the external agency

to apply a finite set of surface tractions to the body with its initial stress
b*

state 2 residing within the yield surface at a reference time t = 0. The

external agency first causes the stress state to move to a point a (at time t)

exactly on the yield surface. Then, it gives rise to an infinitesimal loading

increment da (with a corresponding dEP), over an arbitrarily short

interval At, which now moves the point to a neighboring point outside of or on

the yield surface. Finally, the external agency removes the stress increment

da and returns a (at time t*) along an elastic path. The new work done

* (dWnet) by the external agency over the cycle is assumed to be positive, and

it is equal to the total work during the cycle (dWt) minus the work (dWo) that

would have been done during the cycle by the initial stress a
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t t+&it
dWt (a.dEe) dt + t  [a.,(d e + dcP)] dt +

0

f (a:dc e ) dt .(2.5.4.3)

t+At

However, the net elastic work during the cycle is zero so this equation

simplifies to

t +At

dWt = f ( ad .E dt • (2.5.4.4)
t

and similarly, we can show that

t +At* p

dWo = f .( :dc ) dt (2.5.4.5)

Therefore,

t+At , '-
dWnet :dWt - dW0 f [(g - * ) : dE] dt > 0 (2.5.4.6)

and so by Drucker's definition, the following must hold:

(a- ):de > 0 . (2.5.4.7)

With this "stability in the large" restriction, convexity of the yield

surface can be demonstrated from simple geometric considerations: all vectors

a- a must lie to one side of the hyperplane which is normal to the strain

increment vector dep , and this must hold for all points on the yield

hypersurface, thus proving convexity. Drucker (1956) has also shown that

stability is a necessary condition for uniqueness.

2.5.5 Applicability of the Normality Rule to Soil Mechanics

The essential difference between a plastic material and an assemblage of

*' two bodies with a sliding friction contact is the necessary volume expansion

which accompanies the latter in shear (Drucker, 1954). This volume explansion
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will be predicted by a pressure sensitive yield surface using the normality

assmption. Experimental studies on sand response all generally agree that

normality of the shear strain component is almost satisfied on the octahedral

plane. However, the observed volumteric component of the plastic strain

increment, dcP has been found to be inconsistent with that specified by
kk b

7normality to a conventionally defined yield surface--i.e., one using a

moderate or Taylor-Quinney definition of yield (see, for example, the study by

Lade and Duncan, 1975).

Two options are usually suggested to correct for this discrepancy: the

first and more complicated approach is to determine a plastic potential

Vfunction G, which is entirely distinct from and unrelated to the yield

surface. The second and perhaps more appealing approach is to modify the

normal vector 3F/3a to bring it into agreement with the direction of d~p

As a first step to explaining the second alternative, observe from Equation

2.5.3.2 that

deP =A 6F

kk 5 kk (2.5.5.1)

and

~deej = A 6F
deK = F A j (2.5.5.2)

17

respectively.

In order to bring the gradient 3F/?i in line with the observed trajectory

of dep , the volumetric component k and the deviatoric components are

modified by the scalar factors A1 and A2 ,

de 1 A 8kk (2.5.5.3)

and
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de? = AA 3F
2 " (2.5.5.4)

To clarify the influence of these factors, these equations are restated

in terms of 'triaxial' stress parameters

dvp = AA 6F
-- 1 - , (2.5.5.5)

and

dip = 2 (deP- de) A A2  F
1 2 , (2.5.7.6)

where dvP/v is the plastic volume strain and dEp is the plastic equivalent

shear strain. Figure 2.9 is a geometric interpretation of these equations.

Figure 2.9 (a) corresponds to the normality rule (i.e., A, = A2 = 1) and

Figure 2.9 (b) shows how the volumetric and deviatoric components are modified

to change both the magnitude and direction of the resulting plastic strain

increment vector. Lastly, Figure 2.9 (c) illustrates how the magnitude of the

plastic strain increment vector may be changed without altering its direction.

-"I Restrictions on the selection of the two factors A1 and A2 imposed by

stability considerations have been discussed by Jain (1980). Stability in the

small (Equation 2.5.4.2),

da:dc p = dp deP + ds:dep  0 ,

or for this special case,

d~mndeP : A [dp A1  F A+ ds 2  F (2.5.5.7)
+ kk ) 0,

requires a frictional system to dissipate energy regardless of whether it

expands or contracts. Since shear distortions are considered to be the result
120
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A B / dV"

/ I /v

p, dv'/v

(a)

*C %C..

SdO/ A2de p  Ade p

A 4B'-B A

AdvP/v Advp/v
(b) (C)

Figure 2.9 Diagrams illustrating the modifying effects of the
coefficients Al and A2: (a) Al = A2 = 1; (b) Al A2;
(c) Al = A2 = A (after Jain, 1980)
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of frictional sliding and therefore dissipative, A2 must always be positive.

On the other hand, the modifying fact Al is permitted to take on a negative

value. This means that the spherical stress can extract energy from the

system, but the choice of A1 must still ensure that total energy is dissipated

(i.e., Equation 2.5.5.7 must still hold). Examples of models which

incorporate these parameters can be found in the papers by Prevost (1978),

Desai and Siriwardane (1980), and Sture et al. (1984).

2.5.6 Isotropic Hardening

Based on physical postulates and experimental stress probes, various

rules have been suggested to describe the metamorphosis (or hardening) of the

yield surface. Of these, the simplest idealization is that of isotropic

hardening (Hill, 1950). To illustrate this concept, consider a hypothetical

isotropic material with a circular initial yield curve (or surface) centered

at the origin of principal stress space and of some initial radius k0, Figure

2.10. Also assume the existence of an outer concentric failure or limiting or

bounding surface of fixed radius kf. Although this is an inapproriate

representation of yielding in engineering materials, its visual and

mathematical features are ideal for demonstration. It is used almost

exclusively in this section as a vehicle for introducing other related

concepts.

For a uniaxial compression stress path, Figure 2.10, the stress point

moves up the a1 axis and meets the initial yield surface where c ko, point

Ii' A. As the stress point continues up this axis, the initial surface expands

uniformly about the origin to stay with the stress point; the current radius

of the circle k is equal to a1  Note also that, from the geometry of this

yield surface, the only non-zero component of plastic strain is E. if

loading continues until cy kf9 the material fails (i.e., K p+0), but if the
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Figure 2.10 Schematic illustration of isotropic and kinematic
hardening

123



- - - -- -

path terminates at some pre-failure stress k ,k point B in Figure 2.10,

and is followed by an (elastic) unloading back to the origin 0, the expanded

p yield surface of radius k* remains as memory of the prior loading. Now, if

a 2 is increased while maintaining a 1 at zero stress, the material yields or

flows plastically only if a 2 reaches and then exceeds a magnitude of k*.

Expansion of the yield surface takes place as before when a2 > k .Thus,

in effect, isotropic hardening means that the material hardens equally well in

all directions--it remains istropic despite the hardening.

How might isotropic hardening correspond to reality? If the material

under investigation is a soil, we may assume that hardening takes place

primarily as a result of compaction, and that the anisotropic realignment of

the microstructure is insignificant. Reduction in the porosity represents an

* all around (or isotropic) hardening (or strengthening) of the material.

However, if the hardening is not due to an all around effect like porosity

changes or if the anisotropic fabric induction is consequential , then we must *

keep track of the material directions and account for anisotropy within the

framework of plasticity theory. Because of the important role isotropic

hardening rules play in soil mechanics today, these are discussed in some

detail before introducing the specific rules designed for anisotropic (or

kinematic) hardening.

If the stress tensor appears as the only independent variable in the

equation for the yield surface, the configuration of the current yield

surface, as given by say the size of the isotropically expanding or expanded 1

* circle, is determined solely by the stress history. This particular choice is

the basis for the stress hardening theories. Prager (1949) proposed, however,

that the mechanical state of a material, as manifested by its yield surface,

should, in addition to y ,also depend on the components of the plastic strain
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P, F(c~ , P) 0 . Applying this postulate to the illustrative isotropic

hardening model implies that the radius k, should depend on

*P, F[,,k(EP)] = 0 . With this additional constraint, the consistency

condition takes on added importance since the differential

dF = )F dai. + F dEPs = 0
j i j + Pr rs (2.5.6.1)

13 rs _

must be satisfied during plactic loading. Substituting the flow rule

(Equation 2.5.3.12) into this equation makes the consequence of the

restriction more transparent,

?F d .iJ + F 1 F 1 {6F d c 0

ij Kp p omn AF12 1pq pq 0

from which the scalar term ( F/a ij )do j may then be factored out to show that

Kp = - 8F __?F 1
Kp I V VFI 2' (2.5.6.1)

mn mnI -~

or for the illustrative example,

Kp )F 6k 6F 1 (2.5.6.3)

mn mn

Therefore, the plastic modulus can be computed directly from Equation

2.5.6.3 if one can postulate an equation linking the size of the yield surface

(k) with the plastic strain £Por its invariants if material isotropy is

assumed. Even more generally, any number of identifiable plastic internal

variables qn (including ZP) may be used to characterize the state of the

material, F(Z, q1n) = 0 . The name plastic internal variable (PIV) is selected

in order to emphasize its association with plasticity in particular, while the
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name internal variables is associated with inelasticity in general (Dafalias,

1984). Examples of PIVs include the plastic strain tensor, the plastic work,

and a scalar measure of cumulative plastic strain; many authors prefer to

identify the (non-plastic) internal variables of soil as the porosity, and the

numerous fabric measures such as the orientation of the particles and their

contact planes. The evolution of qn is given by

d~n = L Zn

where L is the loading index defined in Equation 2.5.3.14, and r are

functions of the state variables (Lubliner, 1974). If, for

example, q, represents EP, then r is the unit normal to the yield

surface n in associative plasticity. The generalization of Equation 2.9.6.2

is therefore

K = -)F r 1

pn

Perhaps the three most popular plastic internal variables used in soil

plasticity are the plastics volumetric strain Ek the plastic work
kk plsi wok0

Wp = f (yij dE p ) dt (2.5.6.4)

and the arc length of the deviatoric plastic strain £p

r = f V(dePjdePj) dt . (2.5.6.5)

When plastic work appears as the state variable, the formulation is classified

as a work-hardening theory. Similarly, if one or a combination of the

invariants or arc lengths of eP or its deviation ep are employed, the material

is said to be strain-hardening. Concepts similar to that of work hardening

were employed as early as the 1930's by Taylor and Quinney (1931) and Schmidt

*(1932). The arc length was used as a state variable by Odqvist (1933).
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However, in these earlier works, the total strain E was used instead of the

plastic strain FP . This was clearly inapproriate because elastic strains

occuring within the yield surface could alter it. With regards to modern soil

, plasticity, the reader is referred to Lade's work (Lade and Duncan, 1975) to

find an application of a work-hardening theory and to Nova and Wood's (1979)

for a strain-hardening description. Mroz (1982) has surveyed the many

specialized forms of these plastic internal variables or hardening parameters,

with emphasis on their applications to soil mechanics.

Models based on the concept of density or volumetric hardening utilize

the irreversible plastic volumetric strain as the state

variable, F(2 , ePk) = 0; examples of this approach can be found in Drucker,

- Gibson, and Henkel (1957); Schofield and Wroth (1968); Roscoe and Burland

(1968); DiMaggio and Sandler (1971); and Sandler, DiMaggio, and Baladi

(1976). With this choice of state variable, Equation 2.5.6.3 specializes to

Kp - F dk 1 6F 1":"... d~ 3 P I FI2 (2.5.6.6)

where p is the mean stress.

One may wonder how the size of the yield surface k may be analytically

linked to the plastic volumetric strain P . This is illustrated by alluding

to an isotropically hardening spherical yield surface. Consider the typical

stress-strain response of soil in hydrostatic compression, Figure 2.1. and

observe from Figure 2.11 that the radius of the yield surface (k) is equal to

/3 p for this stress path. The latter information could have also been

retrieved directly from Equation 2.5.2.5. It is well known in soil mechanics

that the pressure-volume response along this path can be reasonably

approximated by the equation
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LZI Figure 2.11 Two dimensional view of an isotropically hardening
yield sphere for hydrostatic loading
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p = p0  exp (Xek), (2.5.6.7)

or alternatively,

k =k exp (Xek) , (2.5.6.8)

where p (or k) and po (or ko) are the current and the initial sizes

respectively, and X is a constant which characterizes the plastic

compressibility of the material. Higher magnitudes of X imply a stiffer (or

denser) sand. Soils engineers will perhaps recognize this equation as being

an alternative expression for the linear voids ration vs. log mean stress

plot.

From Equation 2.5.6.7, we find that

dp X P0 exp(X Pkk) = X p , (2.5.6.9)

pk k

and for this particular empirical stress-strain relation, the plastic modulus

(derived from Equation 2.5.6.6) is

Kp 1 3 2X p. (2.5.6.10)

Notice that Kp + 0 as 6F/ p + 0, which means that plastic flow is

isochoric (volume preserving) at failure. Normally consolidated clays and

loose sands generally exhibit this phenomenon.

Three types of hardening rules have been described: stress-hardening,

work-hardening, and strain-hardening. With work- and strain-hardening, the

plastic modulus is computed from the consistency condition, but nothing has

yet been said about the stress-hardening theory. Because of its applicability

to the proposed formulation in Chapter 3, it is embedded in the ideas

presented there.
129

U. % " " " " . ' ' w" " " - ' -" -" - ' -" -"," o " -" - • " -" , " ' , "' ' '• " , .,,



Recently, Drucker and Palgen (1981) reminded us that "the temptation to

think of the special form F(Z , EP) = 0 as good first approximation to

reality must be resisted. Writing

dF = 0 = 3F dai  + 6F dEp

6a 1,j mn

13 .mn

and replacing

-F daij by - 6F dJP

a . . m n

mn

generally leads to an undesirable and misleading constraint." They proposed

that the plastic modulus may be entirely stress dependent--that is, the state

of the material (i.e., the yield surface and the plastic modulus) is given

* '-' soley by the state of stress. In Chapter 3, it will be shown that "freeing"

the plastic modulus from the consistency condition does, in fact, lead to a

simpler and more elegant approach.

2.5.7 Anisotropic Hardening

Kinematic hardening is a term introduced by Prager (1955) to describe his

proposition that the yield surface rigidly translates in stress space. It is

',V easy to visualize this movement and its connotation by considering again the

hypothetical elastic-plastic material with the circular yield surface, Figure

2.10. If after the unloading from a1 = k to zero stress was followed by a

complete reversal of al, the isotropic hardening idealization would not

predict any plastic strains until a 1 reaches and then goes beyond -K .

Experimental evidence suggests that this is not true: Bauschinger (1887) found

that if a metal specimen is compressed beyond its elastic limit, then its

yield stress in tension is lowered. This mode of response was anticipated
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earlier by Wiedmann (1860) and has been confirmed more recently by many

experimental investigations. See, for example, Naghdi, Essenburg, and Koff

P(1958); Ivey (1961); and Phillips and Weng (1975).

To capture the essence of the Bauschinger effect, Prager (1955) assumed

that the yield surface translates without deforming to follow the stress

point, the direction of translation being the direction of deP. With such an

idealization, yielding would be predicted at point C in Figure 2.10 on an -

unload following a loading from 0 to B. This is in striking contrast to point

D, which would have been predicted for the isotropic hardening theory.

Therefore, in order to more generally characterize a yield surface, not only

should its size k be monitored, but also its center coordinate

Z, F(2, 2, k) = 0. The consistency condition is now more generally written

as:

dF = _F:da + _F:dE + bF dk : ,2..)

or F(g + da, e + dc k + dk) = 0 must be satisfied during plastic

loading.

Yield surfaces may simultaneously change their size and center

coordinate, and these are said to follow in isotropic/kinematic hardening

rule. If the center coordinate e is some scalar magnitude multiplied by the

Kronecker delta 6, the material remains isotropic, but in general, the
>-.-

translation of the yield surface takes induced anisotropy into account and

reflects the history of loading.

As mentioned before, Prager (1955) assumed that the yield surface's

center translates in a direction parallel to the plastic strain increment

vector dEP. However, in the application of this hardening rule, a problem
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arises: although the yield surface remains rigid in nine-dimensional stress

space, it may not appear rigid in subspaces. To overcome this difficulty,

Ziegler (1959) proposed that the surface translates in the direction of a

radius connecting its center with the stress point [i.e., de (2 - )].

Based on experimental observations, Phillips (Phillips and Weng, 1975) has

postulated that the yield surface translates in the direction of the stress

increment (i.e., dZ - da), while simultaneously changing its shape to manifest N

the cross effect. He accomplished this by pulling in the "rear" of the yield

surface as it moved along the trajectory of the stress path. Baltov and

Sawczuk (1965) described an analytical hardening rule in which the yield

surface rotates in addition to translating and isotropically hardening.

Virtually all of these anisotropic hardening rules have been employed in

soil plasticity. Prevost (1978), in describing an early version of his

pressure-sensitive model, gives options for using all but the rotation and

shape transformation hardening. Anandarajah et al. (1984) describes a special

application wherein the yield surface is permitted to rotate about the origin

as well as isotropically expand. A similar approach was also adopted by

Ghaboussi and Momen (1982). Poorooshasb, Yong, and Lelievre (1982) describe a -

graphical procedure for obtaining the shape of the deviatoric section of the

yield surface for complicated paths of loading. The possible variations on

the hardening law are endless, and for additional discussion of research on

hardening, the reader is referred to Naghdi (1960).

A second option for specifying the plastic modulus as a function of --

stress history is to assume that there are a field of nesting (i.e., non- .-.

intersecting) yield surfaces in stress space, each of which has a plastic

modulus associated with it (Mroz, 1967, and Iwan, 1967). Depending upon the

loading, a yield surface will translate and/or change its size such that its
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resulting motion may engage an interior or exterior member of the family of

yield surfaces. To avoid intersecting adjacent members, the active yield

surface must follow a Mroz kinematic hardening rule; this has been implemented

and was described in Seereeram, McVay and Linton (1985). The plastic modulus
4-4

in the nested surface models vary in a piecewise linear manner, and has memory

of the loading history built into the current configuration of the yield

surfaces.

2.5.8 Incremental Elasto-Plastic Stress-Strain Relation

When elastic and plastic strain increments are occurring simultaneously,

the constitutive equations must be organized in a compact but general form for

computational purposes. The equation for the total strain increment (Equation

2.1.2) is

de = de + d

and if the test simulation is stress controlled (i.e., da is input), both

these components can be computed explicitly. Elastic increments are computed

by combining equatons 2.4.1.12 and 2.4.1.13,

e e +1de
de. de. +I. .

: (dsij + 2G) + (dakk+ 3K) 6 ij' (2.5.8.1)

which may then be put in the alternative form:

d~e De da , (2.5.8.2)

where De is the fourth order, incremental, elastic compliance tensor,
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e
D : 2G - 3K 6. 6 + 1 (6 6 + 6i  )
ijkl 18 KG J 1 4 G ji + i jk "

(2.5.8.3)

Plastic strain increments are computed from the flow rule (Equation 2.5.3.13),

and when combined with Equation 2.5.8.2, the total strain increment is

dT=De da+ 1 7 {?)F:dpa (2.5.8.4)

If, however, a strain increment was specified, as in a finite element

routine, the inverse of this incremental stress-strain relation will be

needed. The algebraic operations involved in this inversion are carried out

in the following. First multiply both sides of Equation 2.5.8.4 by the

inverse of the De matrix or Ce ,

;" e d d e  1 VG
C..' ~ E = :a + C 1 {W:dc):ed .C ." -i (2.5.8.5)

Kp i'-G a~

and if we replace (VG / IVGJ ) and (VF / I VFj ) by their unit tensor

notation m and n respectively,
C de = da + Ce  1 m (n : d

.. e. (2.5.8.6)

p

The next step is to multiply both sides of this equation by the

tensor n,

e en: C dE n :da + n C 1 m (n da}

p

and from this result, we find that

n: Ce d" . i1 n:da : d
- .~*K e

p K + n:C :m 134
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which when substituted into Equation 2.5.8.6 gives
de a= + (ce:m) (n:C) de

(2.5.8.7)

or

d = [Ce + (c:mn) (n:Ce)] de = C dE
(2.5.8.8)

K + (n:Ce: m)

p -

If the flow rule is associated (i.e., m = n), the elastic-pl,stilc

stiffness matrix C is symmetric, but if m is not equal to n(i.e., non-

associative flow) the matrix loses its major symmetry and leads to increased

computation costs in numerical applications. For completeness, the

independent components of the symmetric elastic-plastic stiffness tensor C of

the incremental stress-strain relation

da 1 1  C1 1  C12  C13  C14  C15  C16  dc11

do22  C21 C22  C23 C24  C25  C26  22

do3 3  C3 1 C32  C33  C34  C35  C36  d33

do23  C4 1 C42  C4 3  C44  C45  C46  23

* do3 1  C5 1 C52  C53  C54  C55  C56  d 31

do12  C6 1 C62  C63  C64  C65  C66  12
.10

are written out in long form:

C = P + 24 + F [P nkk + 2 4 nli)2]
1111

C12  r + F[(r nkk + 2 4 n 1l)(P nkk + 2 n22 )]

C13  =1 + F[(rn kk + 2 4 n 1 1 )(r nkk + 2 4 n33 )]

C1 4  = F [(r nkk + 2 4 n1 1 )(2 p1 n31
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c15 = F [(r nkk + 2 )j nll)(2 w n 13)]

C16  F [(r nnnn +2 u n1 )(2 un

C22  = + 2 1 + F [(r nkk + 2 P n22) 2

C23  = r + F [(r nkk : 2 1 n22)(r nkk + 2 1 n2

C24  = F [(r n kk + 2 11 n22)(2 1 n23)]

C25  : F [(r nkk + 2 p n22 )(2 i n1

C26  = F[(I' nkk + 2 P n22 )(2 u n12)]

C33  r + 2u+F [ 2 n33 )
2]

C34  : F [(r nkk + 2 p n33)(2 u n23)]

C35  nF (P kk + 2 P n33 )(2 13)

C36  : F [(r nkk + 2 n33)(2 u n12)]

C44  : u + F [4 (u n23)2]

C45  : F [(2 u n23)(2 P n13)]-

C46  = F [(2 P n23)(2 t n12)]-

c C55 = u + F [f (v n13)
2

,.. C56  = F [(2 P n1 3 )(2 u n

C66 : u + F [4 (p n12 )

where

F .7

K p + r" (n kk)2 + 2 
..
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CHAPTER 3

PROPOSED PLASTICITY THEORY FOR GRANULAR MEDIA

constitutive model for sand is proposed within the framework of a

rater pecaltime-independent or elastic-plastic theory. In its simplest

form, the material model exhibits no memory of prior plastics deformation,

r%4 although modifications can be easily devised to account for more complicated

aspects of real behavior. This elementary form, with no account of hardening,

lies at the extreme end of a spectrum of idealizations where the conventional

work-hardening theories are at the other extreme and the "bounding surface"

type formulations are intermediate.

The key features of the theory as applied to sand are:

1. The material remains at yield during unloading as well as loading,

Figure 3.1.

2. Yielding is defined as any plastic deformation, no matter how small,

and not by the traditional moderate offset or Taylor-Quinney (1931)

definition, Figure 3.2.

3. Material behavior at each state of stress is assumed to be stable in

the small for any direction of motion of the stress point. This

implies that the plastic strain increment (dcP) is normal to the

yield surface (Figure 3.2) and is calculated as (cf. Equation

2.5.3.12):

p
d = n (da,(3.1.1)
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where Kp is the plastic modulus n is the unit normal to the yield

surface, and do is the stress increment.

4. Unlike many formulations, the consistency condition is automatically

satisfied, and plays no role in the determination of the plastic

modulus Kp. For the non-hardening version proposed here, Kp depends

solely on the current stress state, whereas with the hardening

modification, stress history effects are manifested by the evolution

of an independent hardening control surface. This surface is

generally not coincident with a yield surface.

5. In the simplest version, with no history dependence, the nested

family of yield surfaces and scalar field of plastic moduli do not

change; i.e., there is no hardening and cyclic response is

immediately stable.

6. The yield surfaces are chosen so that the normal to each is constant

in direction along a radial line from the origin, Figure 3.3.

7. The scalar field of plastic moduli in stress space varies from a

continually increasing maximum plastic stiffness in pure hydrostatic

loading to zero as the stress point approaches a stationary failure

or limit surface, Figure 3.3.
2,

8. The limit or failure surface is also not a member of the family of

yield surfaces; it intersects them at an appreciable angle,

Figure 3.3.

9. No purely elastic domain of stress exists.

The first part of this chapter describes those aspects of sand behavior

that suggest the use of such an unorthodox theory. Then, working from well-

kv established experimental observations on sand, detailed analytical forms are

tendered for the set of yield surfaces, the scalar field of plastic moduli
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Figure 3.3 Pictorial representation for sand of the nested set of
yield surfaces, the limit line, and the field of
plastic moduli, shown by the d~p associated with a
constant value of n dO

pq pq
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(which impl icity defines a limit surface), and the rule to ensure that the

yield surface follows the stress point.

At the outset, it must be emphasized that these selections were not 1
1.4

instituted after a systematic rejection of other alternatives, but they

evolved during the course of development as certain features were incorporated

and others, deemed less important, were deleted. It is therefore quite

possible for a potential user to match data equally well or even better with

an alternative set of choices. The structure of the theory does not hinge on

these details. f

After presenting the analytical forms for the yield surface and the field

of plastic moduli, a description of the initialization procedure follows, with

emphasis on the physical significance of each parameter and its expected

variation with initial porosity. All models constants are then identified

*with a corresponding stress-strain or strength parameter (or concept) inV

common use by geotechnical engineers. The slope of the zero dilation line (or

the friction angle at constant volume) is taken as independent of initial void

ratio as found experimentally. Each of the other parameters each parameter

depends only on the initial density. Two standard laboratory tests specify

the material parameters: a hydrostatic compression test and uniaxial

compression test with a small unload-reload loop to assess the elastic

properties. Calculation of each of the eight constants--two elastic and six

plastic--of the simple model is straightforward and can be carried out

expeditiously with the aid of only a hand calculator; the procedure involves

no heuristic, or curve fitting, or optimization techniques. In fact, if the

elastic and plastic strains are already separated and if typical values for

two less critical plastic parameters are chosen in advance, the procedure will

take as little as ten minutes.

142



A comparison of calculated results and experiments, for a series of

hollow cylinder and triaxial tests over a range of confining pressures and on

materials of different origin and initial density, demonstrates the realism of

the simple idealization for a wide variety of stress paths.

Two hardening modifications to the simple theory also are presented. The

first is an adaptation of Dafalias and Hermann's (1980) bounding surface

theory for clays, the key characteristics of which are: i) the laryest yield

surface established by the prior loading history acts as a boundary of

"ivirgin" plastic moduli , and ii) a radial mapping rule is used to locate

conjugate points on the boundary surface for interior stress states. These

constitutive equations are implemented in a finite element routine to solve a

boundary value problem of growing interest in soil mechanics, especially in

the field of insitu testing, and one for which measured data was available:

the expansion of a vertically embedded cylindrical cavity.

Based on the documented behavior of sand, a second more realistic

hardening option is then proposed. It differs from the previous one in that:

i) the hardening control surface does not resemble the yield surface, and

ii) a new interpolation function for the reload modulus is implemented. The (
versatility of this novel formulation is explored by simulating: a) the

influence of isotropic preloading on an axial compression test, and b) the

buildup of axial strain in a cyclic stress controlled uniaxial test.

V Finally, advantages and limitations of the model are indicated; a

difficulty does arise for somewhat unusual inward loading paths which start

near the failure surface.

3.2 Material Behavior Perceived as Most Essential and Relevant

Those aspects of the behavior of sand (or of any material) that are

identified as key aspects will vary greatly with the problems of prime
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interest. Furthermore, any representation of the actual complex inelastic

p behavior of a material is a matter of background and taste. Drastic

idealization is necessary and so tends to be controversial even in those rare

instances when ample experimental data are available.

For example, in the consideration of geomaterials, just as for metal

polymers and composites, the simplest model suitable for generally increasing

load will differ radically from the simplest model suitable for cyclic loading

LAC.,between fixed limits of stress or strain. The simplest model that covers both

types of loading will not match some aspects of each very closely.

Adequacy of representation clearly is a matter of viewpoint and

judgement. The aspects selected here as the key aspects of the inelastic

behavior of sands are:

1. The existence of an essentially path-independent (stationary) limit

or failure surface that bounds the reachable states of stress, Figure

3.4. This surface more or less resembles the Mohr-Coulomb criterion

on the octahedral plane, but it may exhibit some degree of curvature

OR (or deviation from a pure friction criterion) on meridional (or q-p)

sections. Studies by Wu, Loh, and Malvern (1963), Bishop (1966), and

more recently, by Matsuoka and Nakai (1974), Lade and Duncan (1975),

Desai (1980), and Podgorski (1985) are among the many on which this

assumption is based.

2. A generally outward path of loading from a state of hydrostatic

pressure to the limit or failure surface will induce inelastic volume

contraction to start. The incremental inelastic volume change will

go to zero at a stress point fai rly close to but clearly bel ow

failure. Then as the stress increases toward failure (peak stress)

in a stable manner, there will be appreciable continuing dilation.
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The stress-strain data of Figure 3.5, taken a recent conference paper

by Hettler et al. (1984), illustrates this phenomenon for axial

U compression tests on sand specimens over a range of initial

densities.

3. The response to partial unloading is dominantly elastic, while the

response to reloading is dominantly inelastic as well as elastic

(Figure 3.6). It is this inelastic response on reloading at stress

levels (defined by q/p) below those reached on the prior loading that

led many years ago to proposals of nested set of yield surfaces with

an innermost surface of small diameter and more recently to bounding

surface models.

4. The inelastic response in subsequent extension testing is not altered
~much by moderate prior inelastic deformation in the compression t~st

regime, as the data of Tatsuoka and Ishihara (1974b) in Figure 3.7

suggests.

5. The ratios of the components of the increments of inelastic strain

remain fairly constant along each radial or proportional

(q/p = constant) loading path in stress space. Data presented by

Poorooshasb et al. (1966), Figure 3.8, and Tatsuoka (1972)

substantiate this contention. Implicit in this premise is the

existence of a radial, path-independent zero dilation line, and

experimental studies by Kirkpatrick (1962) and Habib and Luong (1978)

have confirmed the existence of such a line.

6. At a given stress point, the ratios of the components of the

inelastic strain increments are the same for all outward loading

paths through the point (Poorooshasb et al., 1966), Figure 3.9. This

aspect of sand behavior has not always been found. For example, in
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Figure 3.5 Axial compression stress-strain data for Karlsruhe
sand over a range of porosities and at a constant
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1984) 147



H@

(A)

I0

12

o

STRESS RATIO q/p2.0

FI'U.. ., S)

C*1.

I,-€

I1
0

0.5 1.0 1.5 2.0
.0 I

-0.5

-1.0
i STRESS RATIO q/p

~Figure 3.6 Stress-strain response for a cyclic axial compression

test on loose Fuji River sand (af~ter Tratsuoka, 1972)

' 148

S'
(3€



69 - 0.750 ( A)
3 w, a 2.0 kg/om2

z
2

4AI-111111111l

rE

2

z1

0

1.0 -0.5 0 0.5 1.0 1.

STRESS RATIO q/p

zz



00nrn

IV

MI
OOi

in0 00 C.)0

00
0-i 0y

0-

0
0.

O'JO

C) 2 o c

*~0. 0000cc

O~C 0
'00 tON

0 0 0 0
Oi~ lb 4;WO)JOWd !OJ4S a

0-

bO

1 50

II



Ir

V .M C

cu A 0

UK -
U - a0 C W

IWW

0; 05 0

AS-

00,



U4 comparing constant pressure shear paths and radial loading paths,

Tatsuoka (1972) noticed some degree of stress path influence on the

direction of the plastic strain increment. But this divergence he

found was more pronounced at lower (and thus less critical) stress

levels.

7. Except at very high magnitudes of stress where particle crushing

becomes important, the stress-strain response of sand in hydrostatic

compression is of the "locking" type: the incremental pressure-volume

response becomes stiffer with increasing levels of bulk stress.

8. At a constant all-around pressure, the overall stiffness of the sand

decreases as the intensity of the shear stress increases.

Much of the recent literature on constitutive relations for granular

media, quite approriately, is devoted to the proper characterization of the

p. state of the material and the change in state. However, as a first

approximation, the simple form of the proposal implemented here postulates

that the state of the material is unchanged by the inelastic deformation.

This hypothesis is a special case of what Cherian et al. (1949) in their study

of commercially pure aluminum, termed orthorecovery: the reloading curve, for

the uniaxial case, is finitely displaced from and parrellel to the original

curve, Figure 3.10.

In the application to sands, such a formulation does automatically give

those key aspects of the inelastic behavior labelled 3, 4, and 6. Simple and

approriate choices of the scalar field of plastic moduli and the field of

yield surfaces permit matching the failure surface (aspect 1) and produce the

type of inelastic behavior labeled 2, 5, 7 and 8.
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3.3 Details of the Yield Function and Its Evolution

The analytical representation of the yield surface is guided strongly by

experimental observation, and to a lesser extent by some certain very helpful

mathematical simplifications. But before going into these details, it is

instructive to remind the reader that yielding, in this context, is the

existence of a plastic strain increment vector (Figure 3.2) no matter how

small and is not defined by the traditional offset or Taylor-Quinney (1931)

methods.

3.3.1 Isotropy

The soil is assumed to be isotropic, and thus the yield function may be

expressed solely in terms of the stress invariants. A cylindrical coordinate

system in Haigh-Westergaard (or principal) stress space is particularly

attractive because a simple geometrical interpretation can be attached to each

of the following invariants:

11 = ak = 3 p, (3.3.1.1)

J= V sij = q/V3 and (3.3.1.2)

e = sin "1 [ai + 03 2 02] , 300 0 30o . (3.3.1.3)
2 V(3 J2 )

With such an isotropic representation, the general six dimensional form

of the yield surface simplifies to (cf. Equation 2.5.2.6)

*" F(I1I /J2' 8) : 0. (3.3.1.4)

This depiction is reduced further to two dimensions by normalizing /J
2

with a function of e, say g (8) to obtain a modified octahedral shear stress,

j2 2 / g(9) :q / 3 . (3.3.1.5)
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The function g(O) is such that g(300 ) 1 1 and it determines the shape of the "

w-section. For instance the Mohr-Coulomb relation, Equation 2.7.2.5, gives

g(O) = cos(300 ) - {[sin(300 ) sin O]/V3}
cos 0 - [(sin 6 sin *)/€3]

which defines a straight line with corners occuring at 0 = ±300 as shown in

Figure 2.9. To avoid these corners, continuous functions are chosen such that

dg(B) = 0 at e= ±300
dO

Such functions can be written in polynomial or trigonometric form. Taking

g(30') = 1 and g(-300 ) = R, William and Warnke (1974) suggest an elliptic

expression of the form

g(O) = (1-R2) A + (2R-1) V[(2+B) (1-R2) + 5R2 - 4R] (3.3.1.6)

(2+B) (1-R2) + (1-2R)
2  (

where

A = V3 cos 6- sin ,

B = cos 20 - V3 sin 20 ,

and R specifies the ratio of the radius [/(2J 2)] in extension to that in

compression. For convexity, R must like in the range

0.5 4 R 4 2

By selecting
3 -sin

R + sin 0 (3.3.1.7)

the function g(O) ensures that the smooth deviatoric locus matches the Mohr-

Coulomb criterion in compression and extension. Although this choice is made

here for convenience, other magnitudes of R may generally be determined from

experiment. Furthermore, observe that by setting R = 1, the yield surface

becomes a Drucker-Prager (1952) or extended von Mises criterion.

A simpler alternative to Equation 3.3.1.6 was proposed by Gudehus (1973),

g(R) ( sn ' (3.3.1.8)
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but this function suffers from the unrealistic constraint that R must be

*greater than 0.77 or ( < 230) to ensure convexity.

With the introduction of this modified octahedral shear stress, the form

of the isotropic yield surface is now written as:

F(I 1 VJ2 =0. (3.3.1.9)
1' 2 0. U

3.3.2 Zero Dilation Line

An important aspect of the theory is the existence of a zero dilation

radial line in VJ2-11 (or q -p) space, say slope of N in VJ*-I space

2 1
- N . (3.3.2.1)

Ascribing special significance to this locus is not without merit because

many laboratory investigations on the behavior of sand have confirmed its

existence. Perhaps most noteworthy, Habib and Luong (1978) and Luong (1980),

using a number of careful experiments, have studied this phenomenon which they

termed the "characteristic state." It is similar and probably identical to

the "phase transformation line" observed by Ishihara et al. (1975) in

saturated undrained experiments.

From their extensive tests, Habib and Luong (1978) concluded that the

characteristic state of a soil is associated with: I
1. a zero volumetric strain rage ( kk = 0),

2. a unique stress level (q/p) where net interlocking ceases and

effective disruption of interlocking starts,

3. a relatively low distortion deformation (E) ,

4. an independence of the initial porosity and the grain size

distribution, and

5. an absence of the influence of fabric anisotropy and stress history.
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of adiin terdt shown in Figure 3.11 suggests that the projection
of te caraceriticstate curve on the q-p plane is practically a straight

linepasingthrughtheorigin of stress space, even though the limit

2 envelope may be highly non-linear along the pressure axis. However, their U

data does not agree with the deviatoric variation of the zero dilation line

mathematically built into Equation 3.3.2.1. This equation suggests that the

mobilized friction angles at the point of zero dilatancy in compression and

extension are the same, or that the deviatoric traces of the zero dilation and

the failure loci are concentric. Figure 3.12 presents data from Habib and

Luong's (1978) paper which indicates this is not strictly true: 0 = 24 .6 0 in

extension vs. 32.50 in compression. If in later applications this turns out

to be a serious limitation of the model, it may be very easily remedied by

selecting an experimentally determined magnitude of R to normalize the zero

dilation line in VJ* -I stress space and another magnitude to normalize the

failure locus. Such an improvement will require at least one additional

material parameter.

state and the more familiar critical state concept (Schofield and Wroth, 1968)

are highlighted in Table 3.1. ~

Two analytic functions are used to describe the yield surface: one for

the region below the zero dilation line, in the sub-characteristic domain, and

another for the region between the zero dilation line and the limit line, in

the super-characteristic domain. These two portions of the yield surface are

chosen to be continuous and differentiable at the zero dilation locus.

3.3.3 Consolidation Portion of Yield Surface

From the istropy assumption, pure plastic volumetric strain must be

predicted for an isotropic compression path. Therefore, a smooth yield
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DrO90% cr 1.a aX 104 Nrn

03-0.3 MPa

Figre .11Constant q/p ratio (as given by constant 01/03 ratio)
Figre .11at zero dilation as observed from axial compression

stress-strain curves on dense Fountainbleau sand.
Note that the peak stress ratio decreases with
increasing pressure (after H~abib and Luong, 1978)
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Figure 3.12 Characteristic state friction angles in compression
-- and extension are different, suggesting that the Mohr-

Coulomb criterion is an inappropriate choice to model
the zero dilation locus (after Habib arnd Luong, 1978)'
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Table 3.1 Comparison of the Characteristic State and Critical

State Concepts.

CHARACTERISTIC 
CRITICAL

PROPERTY STATE STATE

1. Volume Variation c =0 at any q; = 0 at q=0
VV

2. Shear Strain, low indeterminate
(prior to failure) (at failure)

3. Deformation small large

4. Void Ratio (e) any e ecritical

5. Grain Structure maximum uncertain
"locking" effect

6 Loading monotonic or cyclic monotonic,

asymptotic

7. Behavior transitionary asymptotic

8. Definition threshold demarcating idealized
contractancy and concept of
dilatancy domains soil

9. Experimental direct therefore easy by extrapolation
Determi nation therefore

delicate

Source: Habib and Luong, 1978
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surface must intersect the hydrostatic axis perpendicularly, and by a similar

reasoning. it must also be parrellel to the hydrostatic axis at the zero

dilation line.

Figure 3.13 shows plots of smooth yield surfaces back-fitted from the

trajectory of plastic strain increments observed from a series of axial

compression tests on Ottawa sand (Poorooshasb et al., 1966). Guided by these

pictures, the meridional section of the yield surface below the zero dilation

line ( 2/Ii ( N) was chosen to be an ellipse

F = I 1 ( 0  1 + [(Q-1)/N]2 J2 + 1 0 [(2/Q)-I] = 0 , (3.3.3.1)

where 10 is its point of intersection with the I, axis, and Q is a parameter

which controls the major to minor axis ratio of the ellipse. Figure 3.14

k' shows a plot of this yield surface in q -p space; note the mathematical

5interpretation of the parameter Q in this figure. Figure 3.15 gives an

alternate view of the yield surface on the triaxial plane with material

reference coordinates. This choice of the yield function is by no means

original. Roscoe and Burland (1968) derived a particular form of this

equation for their modified Cam-Clay theory in which the parameter Q was fixed

at a magnitude of two such that

F = 1 = 0. (3.3.3.2)

However, in this work, Q is retained as a material parameter to enhance the

simple model's ability to predict the compaction phenomenon. Magnitudes of Q

reckoned from Poorooshasb's plots (Figure 3.13) are 1.75, 1.77, and 2.06 for

Ottawa sand at 39%. 70%, and 94% relative density respectively, so if only a

crude estimate is desired, it is not unrealistic to assume Q = 2.

Theoretically and in general, however,

i 4 Q .(3.3.3.3)
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Figure 3.13 (continued)
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3.3.4 Dilation Portion of Yield Surface

The yield surface's meridional segment above the zero dilation line

U intersects the limit or failure curve at an angle which has no obvious

physical basis (Figure 3.3) This angle plays no role in theory and therefore

offers no useful mathematical link between the yield surface and the limit

surface. Nevertheless, the limit line does serve to delineate the real from

the unreachable part of the dilation portion of the yield surface since the

analytical form of the yield surface does not terminate abruptly at the limit

line. In Figure 3.14, the real part of t',e dilation portion of the yield

surface is the solid curve bounded by the zero dilation and limit lines, while

the unreachable part is the dashed portion beyond the limit line.

A second order polynomial in V'J* 11 stress space was developed
IJ2-

specifically for this portion of the surface. Constraints were imposed to

ensure that: i) the surface passes through the origin of VJ2 - I~ stress

space at a specified slopes, and ii) its first partial derivatives merge

continuously with the half-ellipse at the zero dilation line. The first

requirement is an artifact of an earlier phase in the study (Seereeram et al.,

1985) when it was thought that the slopes of the limit line and the yield

surface should coincide at points on the limit line. However, in the version

here, the slope S is fixed at a slope much steeper than the limit line to give

more leverage in choosing the dilation portion of the yield surface to model

plastic flow.

The proposed yield surface for the dilation domain (V 2 /1 1 > N) is

F =1 2 + b J*+ ES - 2 -Sb] IV*+
1 21 "'2

h~ (1/Q) ElI bN] EVJ -SI*

0 2 11(3.3.4.1)
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where b is a dimensionless material parameter. A detailed derivation of this

equation and the restriction on the parameter "b" are presented in Appendix

A.

From limited experience with this new yield surface, a preselected

magnitude of S equal to 1.5 appears to work well. For reference, note that

the slope of the limit line (VJ*/I1 at failure) is typically in the range

0.20 to 0.35.
1

The constant b is constrained to be less than -2 and the discriminant
N

of Equation 3.3.4.1,

[S- 2 - Sb] 2- 4 b (3.3.4.2)
N 2  N

identifies the canonical form of the surface. With S = 1.5, the back-computed

dilation portion of the yield surface usually turns out to be elliptical.

For completeness, the yield surface gradient tensor equations are

included in Appendix B.

3.3.5 Evolutionary Rule for the Yield Surface

To remain at yield during loading and unloading, the yield surface is

assumed to contract and expand isotropically to stay with the stress point.

This rule was selected because it produces many desirable features, among

which are:

1. successive yield surfaces remain similar, as the data of Figure 3.13

suggest;

2. a unique zero dilation line is preserved for all loading paths, and

more generally, the ratio of the components of the plastic strain

increment vector remain constant for radial lines;
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3. mathematical tractability; and

4. it can be readily modified to give "bounding surface" type hardening

rules.

Since, in this theory, no elastic domain is postulated, plastic strains

can occur at any stress level, and there are no restricted (or elastic) zones

to impede the movement of the yield surface. The size of the yield surface is

given by its intersection 10 with the hydrostatic axis (Figure 3.14). Once

the current state of stress is known, I0 can be solved for directly from

Equation 3.3.3.1 if the stress point is below the zero dilation line, or from

Equation 3.3.4.1 if it is above. Thus, in effect, the consistency condition

is autom tically satisfied. If it is postulated that the yield surface does

not follow the stress point on unloading, this evolutionary rule degenerates

to that of a conventional stress-hardening theory of plasticity.

The equations for updating I0 are presented in Appendix C.

3.4 Choice of the Field of Plastic Moduli

The expected magnitude and variation of the plastic modulus along three

lines in VJ2-11 stress space dictated the choice of the field of plastic

moduli:

1. the hydrostatic axis,

2. the zero dilation line, and

3. the failure or limit line.

Each of these three loading paths are now explored in sequence.

Consider a pure hydrostatic or spherical loading on an isotropic material

with a yield function F(VJ2, 
11) = 0. Since such a path must produce only

volumetric strain, 3F/311 is the only non-zero gradient component, and theh
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flow rule (Equation 3.1.1) therefore specializes to

dep  1 3F/31 (F/II l = 1 d Ikk = 2 (3.4.1)

p p

A comparison of this equation with its elastic analogue,

dek e 1 dokkdkk :3 K kk '

shows that the plastic modulus Kp is analogous to three times the elastic bulk

modulus (K) for hydrostatic compression.

Following a similar development, we find that at a point of zero dilaton,

%"," F/3I 1  0 ,

3F/3VJ 2  0 .

and therefore

de?. = 1 3F/V'J2 sij (aF/aVJ 2) (smn dsmn)- 1 ij SmndSmn13 p 2 ¢-- .P, 4 J2 ( F/ aV 2 p 2 J 2

from which we then see that

V(1 dePde?.) = _ mn dsmn = 1 d(VJ 2 )

p 2 p

or d p  = V(3 deejdeej) = I dq . (3.4.2)

Comparing this equation with its elastic analog shows that K is comparable to
p

twice the elastic shear modulus (G) at the zero dilation line.

Mathematically, this means that at the point of zero dilatancy

S 1 1 (3.4.3)

p dq/di

where dq/di is the tangent modulus. Note that this is a general result not

contingent on any particular choice of the yield surface.
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The final case considers the magnitude of the plastic modulus at the

failure line. At this locus, the material fails in the sense that the

incremental plastic strains are supposedly "infinite". Therefore, in order to

asymptotically approach this response at the limit state, the plastic modulus

must approach zero at all points on this line (see Equation 3.1.1).

The plastic modulus functions as a bulk modulus for hydrostatic loading,

a shear modulus at the zero dilation line for shear loading, and a "failure"

modulus (zero) on the limit surface.

With this background, a specific form is now derived for the plastic

moduli on the hydrostatic axis, and an interpolation rule is then adopted to

model its approach to zero at the limit surface.

The plastic modulus on the hydrostatic axis increases with mean

pressure. A familiar pressure-volume relationship along this axis is assumed

= (11)i exp (X ekk) (3.4.4)

where (Ii)i is the magnitude of I, at the start of a virgin hydrostatic

loading, and X is a plastic stiffness constant. Soils engineers will

recognize this equation as an alternative statement of the typical linear

voids ratio vs. log mean pressure relationship. In incremental form

d11 =I 
1~ X d~k exp(X £c) XI dcek (3.4.5)

which, by comparison with Equation 3.4.1, shows that the plastic modulus Kp is

equal to X 11, a linear stress-dependent function.

It is reasonable to expect the plastic stiffness to decrease

monotonically from its bulk modulus magnitude (X I on the hydrostatic axis

to zero on the fixed limit surface
.7

f(2) =k (3.4.6)
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A simple and not unreasonable rule for this decrease is
Kp 1 1 {1 - [f(~)Ik] n (3.4.7)

in which the exponent "n" is regarded as a material constant. Geometrically,

this interpolation function forces the equi-plastic modulus loci on the

octahedral plane in principal stress space to resemble the -section of the

selected failure criterion f(a) . As will be described later in the

initialization procedure, the observed plastic (shear) modulus at the zero

dilation line provides the necessary information for computing the exponent

"n" directly.

Any desired frictional failure criterion f(a) may be inserted in Equation

3.4.7. The form chosen here is

.___ : k .(3.4.8)

Because one of the sands used in the evaluation had a significantly curved

(along the pressure axis) failure envelope, the straight line representation

was modified to

* )m
J2 1 l/a k

k (3.4.9)

to allow for non-linear pressure dependence. The exponent "m" in this

equation is material parameter that describes the degree of curvature, and Pa

mis atmospheric pressure in consistent units. The modifying factor (lI/Pa)

was proposed by Lade (1977). So, in general, two parameters "k" and "W",

characterize the strength of the material, but as discussed earlier, the

parameter "R" in Equation 3.3.1.6 may also be considered a model constant if

no a priori assumptions are made about matching the compression and extension

radii with a Mohr-Coulomb or any other criterion.
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3.5 Elastic Characterization

Two elastic stress-strain relations are employed. The simpler

idealization is used for simulations within a limited range of mean stress,

while the more complicated option is used for stress paths which cover a wider

range.

In the first alternative, the elasticity of the material is assumed to be

isotropic and linear, while anisotropy and nonlinear effects are attributed to

plastic deformation. The incremental elastic stress-strain relation is

dsr an dakk (3 K)l , and (3.5.1)

dee = ds /(2 G) , (3.5.2)

where K and G are the elastic bu'k and shear moduli respectively, and

dk and dee are the trace and deviatoric components respectively of the

elastic strain increment d~e N

For the second more complicated option, it is assumed that: i) the

material is elastically isotropic, and ii) the Young's modulus E depends on

the minor principal stress a as proposed by Janbu (1963). That is,

E = Ku Pa (03/pa)r (3.5.3)

where Ku is a dimensionless modulus number, and r is an exponent to regulate

the influence of 03 on E. As suggested by Lade (1977), Poisson's ratio v for

sands is assumed equal to 0.2.

It is recognized that these elastic stress-Ftrain relations are the

simplest of choices, and if a more complete elastic characterization of sand

is desired, degradation effects and shear stress dependency must also be
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included. Examples of these more sophisticated elastic idealizations have

been presented by Ghaboussi and Momen (1982) and Loret (1985).

3.6 Parameter Evaluation Scheme

A hydrostatic compression test and an axial compression test furnish the

data to initialize the simple model. But, since it is customary to

hydrostatically consolidate a specimen prior to axial compression, one such

set of experiments can provide the necessary calibration data. Quite

naturally, the initialization procedure will require more tests if certain

aspects of the simple model are to be improved. For example, if the stress-

dependent elastic characterization or the curved failure envelope options are

included, data r A be obtained from a series of, say, three axial compression

* tests over an appropriate range of confining pressures. Furthermore, if

* precise matching of the failure or the zero dilation locus on the deviatoric

plane is warranted, an axial extension test o.- equivalent will also be needed. L
Before going into the details of the parameter evaluation scheme, this is

an ideal juncture to emphasize an important innate aspect of the simple

theory: if the failure envelope is a straight line, the representation

predicts exactly the same plastic strains for parallel stress paths which all

emanate from points on the hydrostatic axis. Therefore, for instance, the

theory will predict identical q/p vs. ZP(or q/p vs ePk) curves for a series of

conventional axial compression paths covering a range of confining

pressures. Data will be presented later which demonstrates this intrinsic

trait of the simple theory.

Material parameters are divided into three conceptually distinct groups:

1. The elastic constants: Ku and r, or K and G.

2. The plastic stiffness/strength parameters which serve to define the

scalar field of plastic moduli: Xn, and k.
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3. The parameters governing the shape of the yield surface, or

alternatively, the parameters governing the direction of the plastic

strain increment vector (nij) and the extent of plastic loading

(nijd0ij) Q and b.

3.6.1 Elastic Constants

The elastic Young's modulus is determined from an unloading segment in

the axial compression test,

E = (1 + v) Aq (3.6.1.1]

where Aq is the deviatoric load reduction, A e is the recoverable (or

resilient) shear strain, and v is Poisson's ratio assumed equal to 0.2. For

the more complicated option in which E depends on the minor principal stress,

the modulus exponent r and log (Ku) are the slope and intercept respectively

of a straight line fit to a plot of log (E/Pa) vs. log (3/Pa) . This data is

most conveniently obtained from the unloading loops of a series of axial

compression tests at different levels of confining stress (3).

3.6.2 Field of Plastic Moduli Parameters

The parameter X is matched to the stiffness of the material in

hydrostatic compression (Equation 3.4.4). It is simply the slope of a plot of
log [11/(11) i] vs. epk for an istropic consolidation test, or in terms of

E11 /(1 )1 ] kk

conventional geotechnical parameters,

,=log(10) 1 +e o

c s
lo 1) C _ Cs (3.6.2.1)

where eo is the initial voids ration and Cc and Cs are the compression and I
swell indices respectively. As an aid in separating the elastic and plastic

volumetric strains, note that direct integration of Equation 3.5.3 gives
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3 (1 - 2 v) (pa)r'l r 1-r,e _ -l Pinitial ]  (3622
kk K - -6U

for a hydrostatic compression path.

The strength parameter k is the peak stress ratio 1 determined from

an axial compression or any other shear path to failure. In terms of more

familiar strength constants,

3 /3 k = (q/P)peak = 6 sin c/(3 - sin s) (3.6.2.3)

where s is the friction angle computed from a compression test (cf. Equation

2.5.2.12).

If the curved failure surface option is used, the exponent m and log (k)

are the slope and intercept respectively of a straight line fit to plot a log

(/d2/ll) peakvS, log al) for a number of tests.

At the point of zero dilatancy on the q/p vs. iP stress-strain curve, a)

the mean stress p, b) the stress ratio q/p, and c) the tangent modulus

dq/di are used to compute the slope of the zero dilation line,

N = (q/p) (at dEp  = 0).T7-k " (3.6.2.4)

The result is then combined with P dePk= 0 and Kp dep (computed from

Equation 3.4.3) to calculate the exponent n of the interpolation function as:

n : log (K /3%p) + log (1- N) . (3.6.2.5)
p -

Choosing n exactly as given in this equation guarantees that the plastic

stiffness at the zero dilation line will be matched. But in order to obtain a

better overall fit to the data, it may be desirable to alter this constant

somewhat. In Equation 3.6.2.5, K p/3,p is the ratio of the plastic stiffness
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at the zero dilation line to that on the hydrostatic axis. For a given N/k

ratio, the exponent n may be interpreted as a measure of the stiffness of the

stress-strain curve. Higher magnitudes of n produce a softer response.

3.6.3 Yield Surface or Plastic Flow Parameters

The constants Q and b (with a eselected slope of S = 1.5) govern the

direction of the plastic strain increment. For a compression shear test

[g(e) = 1],

x = 13 dePk/diP= 6 6F 6F
=6kFk (3.6.3.1)TF * . (6 1

2

Substituting the explicit forms of the partial derivatives for the

consolidation surface (listed in Appendix B) into this identity gives

1-2 [1 - z (Q _1)2 ] + (Q-1) 2 2 +

6 xN 2  N2

[1- (Q 1)2 z I2 (2Q- Q2 ) =0 (6 x N 2 (3.6.3.2)

6 x N2

where z is the mobilized stress ratio /J 2 /I 1 . Similarly, for the dilation

surface, it can be shown that

b = iS [6 x (2z - S + C z2) + C S + 1]: zS2 (3.6.3.3)

where

C- C CS - 2]
N2  N

Therefore, by recording the pointwise incremental plastic
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vol umetri c/ shear strain ratio x and the corresponding mobilized stress ratio z

along an axial compression path, the parameter b can be solved for directly

using Equation 3.6.3.3, while Q must be solved for iteratively from Equation

3.6.3.2. The back-computed magnitudes of Q and b have been found not to

change much from point to point indicating that reasonable choices were made

for both portions of the yield surface.

3.6.4 Interpretation of Model Parameters

An attempt is made in Table 3.2 to attach the simplest possible

geotechnical interpretation to each model constant. Table 3.3 summuarizes the

likely trends in the magnitudes of these parameters with increasing relative

density. Later, in the evaluation of the model, there will be an opportunity

to compare these expected trends with calculated parameters for a range of

densities.0

3.7 Comparison of Measured and Calculated Results Using the Simple Model P
Three data sets are used to demonstrate the range of applicability (in

terms of the loading paths) of the simple model. First, a recent series of

hollow cylinder tests reported by Saada et al. (1983) is used to assess the

model performance along different linear monotonic paths. Each of these paths

emanate from the same point on the hydrostatic axis (p= 30 psi) and move out

in principal stress space at different Lode angles (0), while the

intermediate principal stress or the mean pressure is held constant.

The second test sequence was extracted from a recent paper by Hettler et

* al. (1984). It consists of a comprehensive series of axial compression tests-

on sands at different densities and all-around pressures. This data is

considered very reliable because it has been reproduced by other researchers

using alternative testing devices (see, for example, Goldscheider, 1984, and

Lanier and Stutz, (1984). Since these tests covered a wide range of
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Table 3.2 Simple Interpretation of Model Constants

MODEL PARAMETER GEOTECHNICAL INTERPRETATION

K Friction angle, s

m Degree of curvature of the Mohr-Coulomb
failure envelope

N Friction angle at constant volume, (cb

X, Slope of voids ratio (e) vs. log mean
stress (p) plot, or compression index

b Magnitude of positive angle of dilation
[see Rowe (1962) for a development of
the theory of stress-dilatancy]

Q Magnitude of negative angle of dilation

Ku and r Elastic constants which vary with

confining pressure

n Stiffness of the shear stress-clear
strain ( (q vs. £) curve.

m
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Table 3.3 Expected Trends in the Magnitude of Key Parameters With
Relative Density

i.~aPARAMETER EXPECTED TREND WITH INCREASING RELATIVE DENSITY

Q increases, implying less compation per unit shear
strain

b increases, implying greater dilatancy per unit shear
strain

04,N unchanged, as implied by characteristic state theory

n decreases slightly, modeling a less ductile response

k increases, higher strength due to greater degree of
interlocking

m increases, deviation from pure frictional behavior
becomes more pronounced as interlocking contribution -L to shear resistance increases

X increases, stiffer response in hydrostatic compression
due to denser configuration of particles

Ku increases, stiffer elastic response because denser
packing results in lower inter-particle contact
stresses

r decreases, lower interparticle contract forces result
in a smaller fraction of the granules being cushed
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densities, it was also possible to compare the calculated material parameters

with the trends suggested in Table 3.3.

Thirdly, a comparison of measured and simulated response for a special

series of load-unload-reload stress paths (Tatsuoka and Ishihara, 1974a and

1974b) shows, at least in a qualitative sense, the realistic nature of the

simple representation for much more complicated stress histories.

3.7.1 Simulation of Saada's Hollow Cylinder Tests

Figure 3.16 depicts the state of stress in a typical hollow cylinder

device. All tests paths were stress controlled and were either constant

intermediate principals stress (i.e., constant ar= ae) or constant mean

.pressure shear paths. Fifteen trajectories were considered in principal

stress space. When dealing with such an assortment of stress paths, it is

always convenient to introduce a compact but unmistakably clear notation, and

Saada's (Saada et al., 1983) convention is adopted here. The letters "D" and

"G" appear first in the test designation and they refer to loading conditions

with constant intermediate principal stress or constant mean stress

respectively. The letters "C" or "T" follow and they indicate whether the

axial stress (a )was in relative compression or tension respectively. If a

shear stress (Tz.) was applied, the letter "R" is appended to "C" or "T". The

number which comes after the letters is the fixed angle (in degrees) between

the major principal stress (a1) and the vertical (or z) direction: this is

shown as the angle B in Figure 3.17. These angles were nominally 00

[with Lode angle e = 30o (compression tests)], 150 (8 = 270). 32u (e = 150),

450 ez 00 (pure torsion)]. 580 (e = -15' ) . 75' (e -27' ) , and

900 [O -300 (extension tests)]. So, for example, a GTR 58 test is one in

which:
180
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Figure 3.17 Saada's hollow cylinder stress paths in Mohr's stress

,. space (after Saada et al., 1983)
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a) the incremental application of the stress components ensures no change in

mean stress (G), b) the axial stress is in tension relative to the initial

hydrostatic state (T), c) a torque is applied (R), d) the angle between a1 and

the vertical axis is constant and equal to 58 degrees (Lode's parameter 0 =

-15'). Wherever possible, the more familiar test path nomenclature of Figure

2.2 is juxtaposed with this specialized test designation. Figure 3.17 depicts

the trajectories of these shear paths in Mohr's stress space, and with

reference to Figure 2.2, all test paths are included except the CTE.

Reid-Bedford sand, at a relative density of 75%, was the material tested

in all experiments. Its physical characteristics are given in Chapter 1.

Following the recommended initialization procedure, all but the elastic

parameters were determined from the axial compression and hydrostatic

compression paths of Saada's series of tests. The elastic constants had to be

estimated from the unloading triaxial tests given in Chapter 1, because Saada

monotonically sheared (to failure) all of his specimens. Two solid

cylindrical axial compression tests, at confining pressures of 35 and 45 psi,

were also extracted from Chapter 1 to supplement Saada's data.

Table 3.4 lists the computed parameters. Figures 3.18 and 3.19 show the

measured and fitted response for the hydrostatic compression and axial

compression paths respectively. Very close agreement is observed in both

cases. Figures 3.20 and 3.21 show measured and predicted response for the

axial compression paths on the solid cylindrical specimens at confining

pressures of 35 and 45 psi respectively. Again the correspondence is good.

However, it appears that the observed volumetric compression in the solid

cylinder tests is slightly less than that recorded in the hollow cylinder test

(see Figure 3.19)
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Table 3.4 Model Constants for Reid-Bedford Sand at 75% Relative Density

PARAMETER MAGNITUDE

Elastic Constants:

Modulus number, ku  2,400

Modulus exponent, r 0.50

Yield Surface Parameters:

Slope of zero dilation line, N 0.128

Shape controlling parameter of consolidation
portion of yield surface, Q 2.6

Shape controlling parameter of dilation
portion of yield surface, b 15.0

Field of Plastic Moduli Parameters:

Plastic compressibility parameter, X 280

Strength parameter, k
(note: no curvature in failure meridian assumed) .300

Exponent to model decrease of plastic modulus, n 2

Note: these parameters were computed solely from the experiments of
Saada et al. (1983)

L.49
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Predictions for the RTC and TC stress paths (of Figure 2.2) are given in

Figures 3.22 and 3.23. Although the predictions here are not as precise as

Uthe previous axial compression paths, they are satisfactory considering the

radical departure from the axial compression trajectory used in fitting the

parameters.

Lode's parameter e in all of the previous experiments were the same

( e = 30). When the stress path moves on another meridional plane, as shown

by the prediction of the axial extension test e = -30) in Figure 3.24, the

agreement is far less impressive. Even though the strength asymptote appears

to be reasonably matched, the pre-peak model response is too stiff, and the

large compression strains observed just prior to failure are not

predicted. Close inspection of the remainder of the hollow cylinder

E'. predictions complied in Appendix D uncovers two distinct trends i) as the

trajectory of the stress path moves away from compression toward extension,

the simulations worsen in that the calculated shear stress-shear strain and

volumetric compressive response become stiffer than the measured data, ii) the

strength asymptote is underpredicted for the tests where the angle between the

vertical direction and the major principal stress is close to 320, while it is

overpredicted near 750. Seereeram, McVay and Linton (1985) have attempted to

explain the second discrepancy by correlating (anisotropic) strength with the

angle between the stress characteristics and those of the slip-line field. An

important point to emphasize is that all the constant pressure shear paths,

including the pure torsion test, trace identical curves in q -p stress space,

and so generate exactly the same predicted response.

Because of the well-known experimental difficulties associated with

extension tests (Jamal, 1971, and Lade, 1982). it is perhaps premature to

conclude from this single series of tests that the formulation is unsuitable
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for loading paths which are far removed from compression stress space. In

S fact, the axial extension tests and constant pressure extension tests reported

by Ta"suoka and Ishihara (1974b) and Luong (1980), respectively, contradict

Saada's data and seem to be consistent with the simple model will give.

As part of this research, an experiment was devised specifically to

investigate the volume change phenomenon during an axial extension test. A

solid cylindrical specimen, of height to diameter ratio of unity as suggested

by Lade (1982), was equipped with LVDTs (Linear Variable Differential

Transducers) at the center third of a water-saturated sample. During

extension shear, volume changes were measured by the LVDTs and the

conventional burette readings, and the results of this study are pictured in

Figure 3.25. Superposed on this plot are: a) the observed volumetric response 2

as recorded by the LVDTs and the burette, b) Saada's hollow cylinder extension

test data, and c) the model prediction. Based on this graphic evidence, it

does indeed seem premature to criticize the model's performance in simulating

extension volume strains. The reader is therefore urged to withhold judgment

on this aspect until the soil mechanics community can concur on what is real

behavior for extension tests. This statement is in the spirit of Professor

Scott's epilog in his recent Terzaghi lecture (Scott, 1985) where he called

for the development of an international data bank of test results on soils.

If we do not withhold judgment and assume that the behavior recorded by

Saada is real and that the material is reasonably isotropic, then the data

suggests that both the shape of the consolidation portion of the yield surface

and the plastic moduli interpolation rule in extension differ markedly from

compression. There is evidence, however, to indicate that the sand specimens

used in Saada's experiments were anisotropic. Many researchers have verified

that, at least on the octahedral plane, the strength of nearly isotropic soil
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1h

approximates a Mohr-Coulomb type failure criterion. Podgorski (1985) has

recently surveyed these isotropic failure criteria. Therefore, if such a

criterion is taken for granted, and if the soil is indeed isotropic, the

computed strength parameter should be approximately constant and independent

of the path of loading. To test this hypothesis, three well-known isotropic

failure criteria were used to evaluate Saada's data, and the results are

presented in Table 3.5. Clearly, looking for instance only at the "G" tests

to rule out the possibility of nonlinear pressure effects, inherent anisotropy

has a significant influence on the strength and there is no reason not to

expect it to also have an effect on the stress-strain response. Anistropy

could therefore be the cause of the discrepant axial extension prediction, and

if this is true, it renders Saada's data an unsuitable proving ground for the

proposed theory.

3.7.2 Simulation of Hettler's Triaxial Tests

The physical characteristics of the two sands used in this study--one a

medium-grained sand from Karlsruhe, Germany, and the other a fine-grained dune

sand from Holland--are described by Goldscheider (1984) and Hettler et al.

(1984).

In the first series of tests, the medium grained Karlsruhe sand was used

to prepare four specimens at a relative density (Dr) of 99.0%. These samples

were sheared to failure in axial compression with constant confining pressures

of 50, 80, 200, and 300 kN/m2 respectively, and this data is given in Figure

3.26. Notice here that the failure envelope is straight

(constant ai/ 3 ratios) and the stress-strain curves are neatly normalized.-j
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Table 3.5 Computed Isotropic Strength Constants for Saada's Series
of Hollow Cylinder Tests

[(I - 27] (1,) .056 [-(I1l2) - 9]

12Friction AngleI3 Pa 13

Reference: (Lade, 1977) (Matsuoka, 1974) (Shield, 1955)

Constant Intermediate Principal Stress Tests:

DC 0 (or
CTC of Fig. 2.2) 30.6 4.45 36.71

RTC (of Fig. 2.2) 28.2 4.43 36.67

DCR 15 34.7 5.00 40.39

DCR 32 45.9 7.74 49.69

DTR 58 26.7 5.81 42.74

DTR 75 23.9 5.34 39.49

OT 90 (or
RTE of Fig. 2.2) 29.6 6.64 42.34

Constant Mean Normal Pressure Tests:

GC 0 (or TC

of Fig. 2.2 31.7 4.73 37.57

GCR 15 40.2 5.83 42.89

GCR 32 66.1 11.22 55.02

R 45 (or
pure torsion) 40.4 8.22 49.32

GTR 58 23.9 5.15 41.00

GTR 75 17.9 3.91 35.49

GT 90 (or TE

of Fig. 2.2) 25.6 5.63 40.00
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Figure 3.26 Results of axial compression tests on Karlsruhe sand
at various confining pressures and at a relative
density of 99% (after Hettler et al., 1984)

197

Unj . N 7 . .' :;,. % " , , .
.
."-." ,"..' , , ., - _ . .. . . .. . . .. - -x -- - - . . .



The second phase of the program consisted of tests in which the confining

p. pressure was kept constant at 50 kN/m 2 while the relative density of the

prepared specimens was varied. Stress-strain data for this test sequence was

obtained at relative densities of 62.5%, 92.3%, 99.0%, and 106.6%; see Figure

3.5. Accompanying these data sets on Karlsruhe sand were the results of a

hydrostatic consolidation test (at 99% relative density) and an axial

compression test (at 92.3% relative density) with an all-around stress of

400 kN/m 2. Hettler took care to point out that the specimens were initially

isotropic by noting the equality of the normal strain components during

hydrostatic compression.

The final series of Hettler's experiments were carried out on three

specimens of Dutch dune sand, each prepared at an initial relative density of

60.9%. These samples were sheared in axial compression under ambient

pressures of 50, 200, and 400 kN/m2 respectively. Unlike the medium-grained

sand from Karlsruhe, the failure meridian of this fine-grained sand was curved

as exhibited in Figure 3.27 by the unequal a1 /a 3 ratio at failure.

The model parameters for each sand were initialized and these are

summarized in Table 3.6. Other than the parameters "Q" and "b" (which control

the shape of the yield surface), this list of model constants reflects the

general trends with increasing relative density suggested in Table 3.3. Since

no unloading data was presented by Hettler et al. (1984), the elastic shear

moduli were reckoned, using an ad-hoc procedure suggested by Lade and Oner

(1984), to be twice that of the initial slopes of the shear stress vs. shear

strain (q vs. ) data. And except for the Karlsruhe sand at a relative

density of 99%, hydrostatic consolidation tests were also available, so it was

necessary to estimate the density hardening parameters (k) in all but this one

case.
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Table 3.6 Model Parameters for Karlsruhe Sand and Dutch Dune Sand

MEDIUM GRAINED KARLSRUHE SAND DUTCH DUNE SAND

Relative Density Relative Density

SPARAMETER 62.5% 92.3% 99.0% 106.6% 60.9%

Field of Plastic Moduli Constants:

k .2868 .3195 .3390 .3503 .3400

m - - - - .0601

n 2.2 2.0 2.0 1.9 2.6

X300 500 530 550 300

Plastic Flow or Yield Surface Parameters:

N .265 .265 .265 .265 .230

Q 1.8 1.4 1.3 1.5 1.8

b 12.9 11.4 11.1 11.6 14.8

Elastic Constants:

ku1,070 1,810 2,100 2,200 1,332

r .70 .65 .62 .57 .668

Note: The slope of the yield surface at the origin Of si2-1 tress sae
S, is assumed equal to 1.5 in all cases. Also note thit these sae
parameters were computed from the data of Hettler et a]. (1984).
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As mentioned previously in section 3.6, the representation gives the same

plastic response for each of a series of parallel stress paths emanating from

the hydrostatic axis if the failure envelope is straight. However, if the

failure envelope is curved, of if the plastic bulk modulus increases non-

linearly with hydrostatic pressure, this statement would not be true. I
Hettler's data indicate that in cases where the failure envelope is straight,

see Figure 3.5 for example, the stress-strain curves can indeed be

normalized. Therefore, in such cases, all verifications could just as well be

placed on one plot. However, this was not taken advantage of in preparing the

figures. But, for economy of presentation, the predictions given in the body

of the report for Karlsruhe sand (i.e., the sand with the normalizable data)
E !  are only at one level of confining pressure, 50 kN/m 2 , while the remainder :

have been included for reference in Appendix E. .:7

Figures 3.28-3.32 are, in sequence, plots of the calculated results

superposed with the experimental data points for the hydrostatic compression

-- test at 99% relative density, and the axial compression paths on samples of

relative densities 62.5%, 92.3%, 99.0%, and 106.6%. Correspondence between

measured and predicted response is remarkably accurate in all cases. This is

particularly encouraging because the data are known to be of high quality.

The model's intrinsic ability to simulate this wide cross-section of densities

over a range of confining pressures is testimony to its rationality.

Figures 3.33-3.35 are the predictions of the axial compression tests on

the fine-grained dune sand with the curved failure envelope. These are also

impressive considering the "non-normalizable" nature of the data.

3.7.3 Simulation of Tatsuoka and Ishihara's Stress Paths

Figure 3.36 shows the type "A" and type "B" triaxial stress paths of

Tatsuoka and Ishihara (1974a), and Figures 3.37 and 3.38 are plots of the
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corresponding stress-strain curves they recorded for these paths. The

material tested was loose Fuji River sand, they physical characteristics of

which has been described by Tatsuoka and Ishihara (1974a). Both these loading

paths consist of a series of axial compression paths which are offset at

increasing increments of confining stress for the type "A" case and at

decreasing levels for the type "B".

To a fairly close approximation, all of the axial shear paths for the

type "A" loading program appear to produce somewhat parallel stress-strain

curves, Figure 3.37 (b). This observation lends credence to the idea that, at

least along these paths and for this type and density of sand, hardening may

this plot and the results of a hydrostatic compression test presented by

Tatsuoka (1972), the model parameters for this loose sand were computed and

are listed in Table 3.7.

The predicted curves for the type "A" loading path are shown in Figure

N 3.39, and except for the shear strain direction during the incremental

hydrostatic loadings from points 3 to 4, 6 to 7, 9 to 10, and 12 to 13, this

prediction agrees qualitatively with the measured data. Induced anisotropy is

believed to be the cause of the wrong direction predicted by the isotropicI

model for the small hydrostatic segments.

Quantitatively, the model response is about 15 % stiffer than the

measured data, and this problem stems from the choice of the interpolation

rule that controls the field of plastic moduli. In its present form, it is

not capable of precisely matching stress-strain curves in which the tangent

modulus decreases significantly well below the zero dilation line. Further-

more, by looking at the shape of the stress-strain curve in Figure 3.37 (b),

it is difficult to imagine that failure should occur at a q/p ratio of 1.55.
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Table 3.7 Model Parameters for Loose Fuji River Sand

PARAME MAGN I TUDE

Elastic Constants:

Modulus number, Ku  1,816

Modulus exponent r .513

Yield Surface Parameters:

Slope of zero dilation line, N 0.271

Shape controlling parameter of consolidation
portion of yield surface, Q 2.50

Shape controlling parameter of dilation
portion of yield surface, b 11.0

Field of Plastic Moduli Parameters:

Plastic compressibility parameter, X 150

Strength parameter, k 0.288
(note: no curvature in failure meridian assumed)

Exponent to model decrease of plastic modulus, n 2

note: these parameters were computed from data reported by Tatsuoka (1972)
and Tatsuoka and Ishihara (1974a)
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To gain greater control over the rate at which K pdecreases, the

interpolation rule may be improved as follows. The plastic modulus at each

point on the zero dilation line can be taken as some fraction of its

corresponding magnitude on the hydrostatic axis, and its reduction between

these two radial lines may be governed by one exponent, while a different

exponent may be used to control its approach to zero (at the failure line)

beyond the zerio dilation line. But before doing all this work, it is

important to verify that the observed response is indeed real because the

simple form of the interpolation rule was quite adequate for matching

Hettler's tests on sands of similar relative density (Hettler et al., 1984);

see, for example, Figures 3.29, 3.33, 3.34, and 3.35.

For the type "B" loading path, Figure 3.36 (b), hardening appears to be

more pronounced, but as the simulation depicted in Figure 3.40 suggests, the

* qualitative nature of the simple representation is again not a poor first

approximation.

As shown earlier in Figure 3.7, Tatsuoka and Ishihara (1974b) also

performed medium amplitude axial compression-extension cycles on this loose

Fuji River sand. And as they concluded from their study,"...the memory of

previous stress history experienced during the cycle in extension

[compression] does not appear in the subsequent triaxial compression

[extension], and therefore, the sample shows yielding from the outset as if it

were in a virgin state." Figure 3.41 shows a simulation of this path using

ILI the parameters of Table 3.7, and for the first cycle, the "no-hardening"

Ky postulate does seem relevant. After many cycles, too much strain will be

predicted if hardening is completely ignored. But, for materials subject to

many cycles of loading, as in highway base courses, the parameters governing

the stiffness of the fixed field of plastic moduli may be derived from the
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."" cyclically stabilized stress-strain curve to give more realistic predictions

of the accumulation of permanent deformation.

P 3.8 Modifications to the Simple Theory to Include Hardening

Two hardening options are implemented. The first is similar in many

respects to the bounding surface proposal of Dafalias and Hermann (1980). The

key difference is that the plastic modulus here is given solely as a function
*

of stress. This bounding surface adaptation is incorporated in a finite

element computer program to predict a series of cyclic cavity expansion tests.

Although the first option could simulate inelastic reloading response for
• -.- 'q.

reloading paths which more or less retrace their unloading paths, the shape

specified for the hardened region does not resemble the shapes intimated by

the experimental stress probes of Pooroorshasb et. al., (1967) and Tatsuoka

and Ishihara (1974a). A second option is then proposed to take these well-

known observations into account. This new theory is used to predict the

influence of isotropic preloading on an axial compression test and the build-

- , ~up of permanent strain in a cyclic triaxial test.

Unfortunately, both hardening options sacrifice the ability to predict

"virgin" response in extension after an excursion in compression stress space.

0. 3.8.1 Conventional Bounding Surface Adaptation

In the cyclic context, the term hardening could refer to the increase in

the size of the elastic region or to the increase in the plastic tangent

modulus at a given stress or both (Drucker and Palgen, (1982). This first

modification, which originates from the bounding surface concept of Dafalias

and Popov (1975), involves only an increase in the plastic modulus. Given the

loading history, the objective is therefore first to identify the shape and

'size of the hardened region in stress space, or the totality of points where

the purely stress-dependent plastic moduli are higher than the magnitudes they
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would assume for virgin loading, and then to specify the plastic Moduli at

each of these interior points. In general, the hardening control surface may

not resemble the yield surface; if it does, it is a bounding surface as

defined in the theory of Dafalias and Popov (1975).

For simplicity, the hardened region is assumed to have a shape similar to

the yield surface (Figure 3.16) and a size equal to the largest yield surface

established by the prior loading. Thus, the hardening control surface is

really a conventional bounding surface (F p = 0), within which the yield

-. 5. surface (F = 0) moves. For virgin loading, the bounding surface and yield

surface coincide.

The essence of the bounding surface concept is that for any stress state

a within the boundary surface or hardened domain Fp = 0, a corresponding

image point ; on F p can be specified using an appropriate mapping rule.

Having established ;, the plastic modulus is rendered an increasing function4

of: i) the Euclidean distance between the actual stress state (2) and the

image stress state (;), and ii) the plastic modulus R at .Dafalias and
p

Hermann (1980) employed the radial mapping rule illustrated in Figure 3.42

such that

K p=K [ ,P 6, 6 0, (K P)01,(.811

where ( ois the plastic modulus at 8 8 . To ensure a smooth transition
pK) 0

from reloading to virgin or prime loading, the function K~ must guarantee that

Kp = K pwhen 6 = 0 . This mapping rule also requires that the limit line be

straight to avoid mapping to points ou -ide it.

Since a radial line connects the current stress state ()with the image

state (lwe can write
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where R is a postitive scalar. The equations for computing the mapping

quantity A directly from the current state of stress and the size of the

bounding surface are presented in Appendix F.

The Euclidean distance between the origin and the image point (8 ) and

the distance between the current stress state and the image point (6) are

S B (.. !( .i" '')J  i(3.8.1.3)
0 13 13

and
MI.

,.- 6 ( ( - 1) V C i j ) , (3.8.1.4)

respectively.

Therefore, once B is computed from a knowledge of the size of the

boundary surface (Io)p and the current stress point, the stress state can be

located and used to compute the "virgin" bounding plastic modulus Kp . For

this stress-dependent formulation only a is needed to calculate Kp

To complete the formulation a specific form for the function

K (Equation 3.8.1.1) must now be selected. Zienkiewicz and Mroz (1984)

proposed the form

Kp = Kp [6 /(5 - 6 )]Y = K p 8 (3.8.1.5)

which is adopted bereobecause it pdds only one more parameter (y) to the

existing list. If Y is constant, plastic response is cyclically stable, but

in general, it may be considered a function of the number of load repetitions,

-. etc. to simulate cyclic hardening or softening. Notice from Equation 3.8.1.5

that (Kp) as 5 -+ "

On the hydrostatic axis, observe that

o p 1 222
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where (Io) is the size (or intersection with the hydrostatic axis) of the

boundary surface. Using the plastic modulus formula (Equation 3.4.7) and the

previous equation, the plastic modulus at the bound on the hydrostatic axis is

found to be

Kp X (Iop : A (3.8.1.6)

Substituting this equation into the mapping function (Equation 3.8.1.5) gives

Kp (9) Y+1 = X I [lo)p/Il] Y+ , (3.8.1.7)

which in turns yields the following equation for the plastic volumetric

strains generated on spherical reloading:
-N

,p 1 (Ax - Bx ) , A > B (3.8.1.8)E k X x

where

A = [ll/('o)p] at the end of reloading,

B : [II/ 1o)p ] at the start of reloading

Ekk = plastic volumetric strain caused by reloading from B to A, and

x = Y + 1.

This equation provides a simple method for initializing y. Although one

.- might exist, a closed-form solution for "x'

( y + 1) in Equation 3.8.1.8, was not available so a trial and error

procedure was adopted.
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- 3.8.2 Prediction of Cavity Expansion Tests

I With two additional refinements, the version of the bounding surface

theory described in the previous section has been implemented in a finite

element routine to predict a series of cavity expansion tests. The first

improvement is the freedom accorded the parameter R (of Equation 3.3.1.6) to

match the deviatoric shape of the failure surface. It is no longer forced to

coincide with the Mohr-Coulomb criterion in extension. Instead, R is now a

material constant which is calculated directly from the (generally unequal)

friction angles observed in compression (¢c) and extension (be) tests,
c e

R = [sin e /sin c 1 [(3 - sin €c')/( 3 + sin e)] . (3.8.2.1)

Le c e

A second modification was effected to predict a softer response in

extension tests, as the data of Saada et al. (1983) suggests. To accomplish

this, the exponent "n" of the plastic modulus equation (Equation 3.4.7) was

made a function of Lode's parameter 9,

n = n /g(1) , (3.8.2.2)
.*

where n is the exponent applicable to compression tests and g (0) is as

defined in equation 3.3.1.6. This change causes the shape of the iso-plastic

moduli contours on the deviatoric plane to differ from the trace of the

specified failure locus.

In retrospect, the writers must admit that these modifications were

perhaps not necessary; they do not seem to have as much an impact on the

predictions as originally thought. Therefore, in future studies,

consideration should be given to omitting both of them.

A self-boring pressuremeter probe, implanted in a large-scale triaxial

chamber, provided the necessary experimental data for this study (Davidson,
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1983). The soil tested, Reid-Bedford Sand, was the same as that investigated

by Saada et al. (1983) and Chapter 1. except that the relative density was

about 7% higher.

V Table 3.8 summrarizes from Davidson (1983) essential information regarding

the five pressuremeter tests analyzed. Included in this table are the initial

vertical and horizontal stresses, and the elastic stress-strain and strength

parameters [derived from the data using the elastic-perfectly frictional

"plastic" method of interpretation proposed by Hughes et al. (1977)] Notice

that tests #2 adn #3 as well as tests #4 and #5 were nominally replicate

experiments. The reproducibility of these data (later see Figures 3.45 and

3.46 for example) gave the researchers the needed confidence to proceed with

such a rigorous solution. *
Table 3.9 lists the model parameters used in the finite element analysis,

and these were selected on the following basis:

1. The strength parameter k used in all simulations was computed from an

average of the friction angles listed in Table 3.8.

2. A unique (constant) elastic shear modulus was input for each

numerical prediction, and these were calculated directly from the

small unload-reload loop common to all pressuremeter tests (Table 3.8

provides this information).

3. The material constants, N, Q, b, and n were assumed to be the same as

that for Reid-Bedford sand at 75% relative density (see Table 3.4).

'Judging from Table 3.5, these parameters do not seem to be affected

much by changes in the relative density. Note that in this theory

the slope of the zero dilation line, N, does not vary at all with

porosity.
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Table 3.8 Summary of Pressuremeter Tests in Dense Reid-Bedford Sand

TEST IDENTIFICATION

#1 #2 #3 #4 #5

Initial relative
density Dr (W) 83.2 84.8 85.8 83.2 81.1

"" Initial vertical
stress (kPa) 45.5 155. 157. 265. 265.

Initial horizontal
stress (kPa) 20.7 46.2 51.7 84.8 92.4

Observed lift-off
pressure (kPa) 35.9 46.2 51.7 84.8 92.4

Estimated shear
modulus (MPa) 45.6 55.2 55.2 82.7 82.7

Friction angle, b 39.50 41.70 41.30 41.20 39.20

Source: Davidson, 1983

Note: Test #2 and 43 as well as #4 and #5 were intended to be replicate

experiments
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Table 3.9 Model Constants Used to Simulate Pressuremeter Tests

PARAMETER MAGNITUDE

Elastic Constants:

Elastic shear modulus, G for test #1 45,610 kPa
for test #2 & #3 55,160 kPa
for test #4 & #5 82,740 kPa

(extracted from Table 3.7)

Poisson's ratio, v 0.2

Flow Parameters:

Slope of zero dilation line, N .218

Shape controlling parameter of consolidation
portion of yield surface, Q 2.60

Shape controlling parameter of dilation
portion of yield surface, b 15.0

Plastic Modulus Parameters:

Plastic compressibility parameter, X 580

Strength parameter, k .325

Parameter to model curvature of failure meidian, m 0

Shape hardening controlling exponent n 2

Non-standard Parameters.:

Ratio of radius of failure surface in
extension to compression, R .7

Bounding surface reload modulus parameter, y 15

Note: the parameters G and k were calculated from data reported by Davidson
(1983), X and Y from Linton (1986), and the remainder from Saada et al.
(1983).
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4. The reload modulus parameter Y was reckoned from a series of unload-

reload hydrostatic compression tests reported in Chapter 1. Also
calculated from Chapter 1 was the plastic bulk modulus

parameter k; it was found to be about twice as large as that computed

from a similar test by Saada (see Table 3.4 and Figure 3.18).

However, as the results in Chapter 1 were from many repeated tests,

using different types and combinations of strain measuring devices,

all of which gave consistent results, its characterization was chosen.

5. Finally, the parameter R was estimated from the constant mean

pressure compression and extension tests (GC 0 and GT 90) of the

series of experiments reported by Saada et al. (1983).

Figure 3.43 gives the nodal point and element information of the finite

LA. element idealization of the expanding cavity problem. Observe from this

figure that the radius of the pressuremeter's cavity is equal to 40.8 mm, and

the distance from the centerline of the cavity to the lateral boundary of the

chamber is equal to 607 mm. Also, note the assumption of plane strain for the

boundary conditions and the fact that the lateral periphery of the calibration

chamber does not move. Studies by Laier et al. (1975), Hartmann and

Schmertmann (1975), and Hughes et al. (1977) support the hypothesis that the

pressuremeter cavity expands under conditions of axial symmetry and plane

strain.

The numerical results of the five tests are superposed with the

- experimentally measured data in Figures 3.44 to 3.48. Cavity strain in these

plots is defined as the average radial displacement of three symmetrically

positioned "feeler" arms, divided by the radius of the undeformed cavity. In

each prediction. 200 load steps were used for the initial loading, 50 steps

for the small unloading, and 300 steps for the final loading.
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The remarkably close agreement between the measured and predicted curves

suggests that: a) the constitutive idealization is indeed a good approximation

to reality for this test path, b) the assumption of plane strain is valid,

c) the pressure-expansion tests are free to any major sources of experimental

error, and d) the conventional procedure for computing the friction

angle 0 from pressuremeter data, as outlined in Davidson (1983), is rational.

Detailed results, originating from the finite element output, permitted

an inspection of the typical predicted stress path and the stress distribution

in the zone of influence of expanding cylindrical cavity. In the graphs that

follow, a r Cz ')and cTdenote respectively the radial, axial, and

circumferential components of the stress tensor in cylindrical coordinates.

Figure 3.49 shows the typical variation of the principal stresses with

monotonically increasing cavity pressure. The variation of the predicted Lode

angle 9, an indicator of the relative magnitude of the intermediate principal

stress, is also shown on this plot. Its significance becomes apparent when

related to Figure 3.50, which shows the variation of plastic stiffness in

selected elements. Notice that the material response is softest when the Lode

angle is minus 30, or alternatively, when a r =az (a1I = a 2 ) . This

spectular drop in stiffness is a direct consequence of the connection imposed

between the exponent "n" and the Lode angle q in Equation 3.8.2.2. The

stiffness increases as the Lode angle increases toward a steady magnitude of

about +150, and once there, the plastic modulus decreases again.

Figure 3.51 gives an alternate view of the stress path in which its

relative position with respect to the zero dilatancy line and the failure

envelope is emphasized. It appears that, for this particular boundary

condition, the soil element does not undergo plastic dilation, but compacts as

it is being sheared. Also note from this figure that the reloading path more
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or less retraces the unloading path, and so the actual shape of the bounding

surface does not really matter--virgin response reinitiates at the point of

unloading.

.ZI The importance of minimizing disturbance to the surrounding soil is

emphasized in Figure 3.52, which shows the distribution of principal stresses

with radial distance from the cavity wall. Very high stress gradients exist

in the small annular region of soil within a few centimeters of the probe.

Any significant remoulding in this region due to the field drilling procedure

may result in meaningless pressure-expansion data.

3.8.3 Proposed Hardening Modification

Recall that a hardening control surface is defined here as a surface

which encloses the totality of points where the purely stress-dependent

plastic moduli are higher than their virgin loading magnitudes. As pointed

out previously, experimental studies indicate that the shape of the hardening

control surface does not resemble the shape of the yield surface relevant to

the simple theory. Poorooshasb et al. (1967) and Tatsuoka and Ishihara

(1974a) have found, using a variety of experimental stress probes, that these

surfaces have shapes similar to that of the limit surface.

Using the stress paths drawn in Figure 3.53, together with a Taylor-

Quinney (1931) definition of "yield" (as depicted in Figure 2.7), Tatsuoka and

,.-; Ishihara (1974a) have sketched the family of hardening control surfaces shown

in Figure 3.54. For simplicity, it is assumed that these surfaces are smaller

versions of the limit surface. So, for a straight line failure envelope, a

hardening control surface Fp is defined by the maximum q/p ratio established

by the loading history.

For the more general form of the failure surface (Equation 3.4.9), the

current mobilized stress ration kmob is
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kb = ( m]2 (3.8.3.1)
1

As the stress point approaces the limit envelop, kmob + k. If unloading

takes place (i.e., kmob decreases), the maximum magnitude of kmob is recorded

and labeled the memorized stress ratio kmem. This magnitude then specifies

the size of the "boundary" or hardening control surface.

At any instant therefore, three stress ratios are known: i) a fixed

magnitude k (which is the size of the stationary limit surface, ii) the

current mobilized stress ratio kmob, and iii) the memorized stress ratio kmem

(or the historical maximum of kmob). Id Kmob = kmem, the virgin plastic

modulus given by Equation 3.4.7 is applicable, but if k mob < kmem (a shear

preloading), a stiffer modulus must be stipulated.

Equation 3.8.1.1 is again used to specify the reload modulus, and it is

specialized here to

Y1
Kp =[(K) ( + (3.8.3.2)
p p p p

0

where Y is a model constant. Observe that, as required, Kp = p when

=, and Kp = (Kp) when 8 6 In contrast to the previous bounding
p po 0

surface formulation, the original of mapping is slected as the hydrostatic

state on the octahedral plane containing the current stress point, Figure

3.55.

From Equation 3.4.7, note that the virgin or prime plastic modulus 9p at

the conjugate point (1 : Ii, /j2) is simply

Kp = 1 [1 - (kmem + k)]n (3.8.3.3)
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Also, recollect from Equation 2.5.2.3 that the radius on the deviatoric plane

is equal to V(2J 2) so

6 (/J2 - /J2 )//J2 : [(kmem " kmob)/kmem] (3.8.3.4)

As in the first hardening option, the magnitude of the reload plastic

modulus on the hydrostatic axis, (Kp) o. is given by (cf. Equation 3.8.1.7)

(K p)0 0 I 0) p/1 1 Y1 II P0) /II IY+1(3.8.3.5)

where (IO)p is the point at which the largest yield surface intersects the

hydrostatic axis, Figure 3.56. With Kp, 8/6 o, and (K p)o detailed in Equations

3.8.3.3, 3.8.3.4, and 3.8.3.5 respectively, only the parameter y, is needed to

completely specify the reload modulus interpoltion rule (Equation 3.8.3.2).

But before completing the formulation, a shortcoming of Equation 3.8.3.2

must be alluded to and amended. It occurs for shear paths following pure

hydrostatic preconsolidation. Since in such a case kmem is zero, no hardening

is predicted for any subsequent shear path. The data of Hettler et al. (1984)

in Figure 3.57 for a subsequent axial compression path contradicts this

statement. Although any differences in the shear stress vs. axial strain and

the dilative behavior are imperceptible, a conspicous hardening effect shows

up in the compaction volumetric strain. Consequently, a modification is

sought to recognize isotropic or nearly isotropic preloading and to recover

Equation 3.8.3.5 as a special case for cyclic hydrostatic compression tests.

Since the preconsolidation process does not seem to have any effect on

response in the dilation domain, it is not unreasonable to postulate that the
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effects of isotropic preloading should be ignored at some radial line at or

below the zero dilation line. Such a modification can be effected by

Prewriting the plastic modulus formula (Equation 3.4.7) as:

Kp(A') Y+ {I - /k n  (3.8.3.6)

where

B1 = B [1- Vd, ]+ Vi 2X IX N X IN

PrA: X N =slope of the radial line beyond which "isotropic" preloading

effects are ignored (0 < X < 1)

and 0 is the scalar radial mapping factor defined in Equation 3.8.1.2. In

other words, the largest yield surface established by the prior loading acts

somewhat like a cap to the "q/p" hardening control surface.

To test this hypothesis, the isotropically preloaded data of Figure 3.57

for Karlsruhe sand at 99% relative density was predicted using the relevant

simple model parameters of Table 3.6 and the assumptions that: a) the entire

elliptical portion of the yield surface acts as a cap to the hardening control

surface (i.e., X = 1), and b) y = 15 (as for Reid-Bedford sand in Table

3.9). Since there was no shear preloading, the parameter y1 was not needed.

Figure 3.58 shows the calculated and experimental results; the correspondence

is excellent.

Figure 3.59 shows the axial strain accumulation in a constant amplitude

stress-controlled cyclic axial compression test (Chapter 1). The material

tested was Reid-Bedford sand prepared at an initial relative density of 75%,
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and the external axial load was cycled between nominally fixed stress limits

of 0 and 100 psi with an ambient pressure of 30 psi.

= Granular base course and subbase course materials undergo this type of

continued (or cyclic) hardening under repeated loads for as many as 10~ cycles

(Brown, 1974), beyond which point there is cyclic stability, or plastic

shakedown, or sometimes a sudden degradation. Only a crude formulation for

cyclic hardening is implemented here to demonstrate the versatility of the

model to predict this ratchetting. The interested reader is referred to

Eisenberg (1976) and Drucker and Palgen (1982) for examples of more general

descriptions of cyclic hardening and cyclic softening, and to Mroz and Norris

(1982) for an example of a cyclic degradation option for sand.

To simplify the theory, the response in cyclic hydrostatic compression is

assumed to be immediately stable. That is, the parameter y is assumed to be

constant and the reload modulus on the hydrostatic axis, (K P)0 , is unaffected

by the number of load repetitions. This is not a bad assumption when one

considers the relatively small plastic strains occuring in this non-critical

region of stress space. With this assumption, cyclic hardening (or softening)

effects are controlled solely by the exponent Y 1 of the reload modulus

equation (Equation 3.8.3.2). Note that high magnitudes Y1 produce a softer

response.

Factors which affect the accumulation of permanent strain in cohesionless

material have been reported to be the number of load repetitions, stress

history, confining pressure, stress level, and density (Lentz and Baldi,

1980). All but the number of load repetitions and the stress history are

implicit in the simple theory. Stress history effects have been included by

the introduction of the hardening control surface, and now cyclic hardening is

incorporated by replacing the parameter Y 1 with the empirical equation
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Y : Y2 (NRP) (3.8.3.7)

where NREP is the number of load repetitions. Y2 is the magnitude of y1 for

the first loading (NREp=I), and Y3 (a negative quantity) models the decrease

in Y29 or the stiffening of the response with increasing numbers of load

cycles. By assigning an approriate magnitude of y1 for each cycle,

log (Y2) and y3 can be determined as the intercept and slope respectively of a

straight line fit to a plot of log (y 1 ) vs. log (NREP).

The permanent strain accumulation of Figure 3.59 was predicted using as

approriate: a) the simple model plastic parameters and the reload modulus

parameter Y of Table 3.9, b) the elastic constants of Table 3.4, and

c) back-computed magnitudes for the cyclic hardening parameters Y2 and Y3

To get a more precise prediction of the axial strain for the first (or virgin)

loading, the strength parameter k was reduced slightly from .300 to .295. The

parameters y2 and Y3 were computed to be 5.23 and -0.11 respectively, and

cyclic stability was assumed after 25 cycles. Figure 3.60 shows how precisely

the representation predicts this buildup of axial strain.

3.9 Limitations and Advantages

In conclusion, a number of limitations and advantages of the proposed

theory are summarized.

At this early stage in the development of the model, its main limitations

appear to be following: 3

1. As shown in Figure 3.61, an unusual range of stress paths, moving Il
from region A into region B, can penetrate the limit surface as

elastic unloading or neutral loading paths.
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2. The interpolation rule used to model the decrease in Kp as the stress

point moves from the hydrostatic axis to the limit surface needs

refinement. It is not capable of matching stress-strain curves which

become soft at the lower stress ratios.

3. The proposed hardening options give up the ability to predict virgin

response in extension following a prior loading in compression.

Thismay be corrected by adding a degree of stress reversal variable

fsimilar to the ones used by Eisenberg (1976) and Ghaboussi and Momen

(1982).

The model proposed here appears to be significantly more rational, more

attractive, and more manageable than many of the present theories because

1. of the separate and independent status accorded the yield surface,

the limit surface, and the hardening control surface;

00 2. of the simplifications resulting from the automatic satisfaction of

the consistency condition which therefore does not enter into the

determination of the plastic modulus;

3. each parameter has a physical significance and each can be correlated

to a stress-strain-strength concept in routine use by geotechnical

engineers;

4. experiments used for model calibration are the standard triaxial test

and a hydrostatic compression test"

5. the initialization procedure is straightforward and can be carried

out expeditiously;

6. varjing degrees of sophistication can be achieved by adding model

constants and by assuming numbers for, instead of rigorously

calibrating, certain less-critical material parameters;
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7. the model could predict reasonably accurately a wide variety ot

monotonic stress paths over a range of densities and sands of

different genesis. and in its crudest form, it could also

qualitatively simulate the more complicated type "A", type "B", and

compression-extension stress paths of Tatsuoka & Ishihara (1974a,

1974b);

8. the model very precisely predicts the expansion of a cylindrical

cavity, which, although not particularly complicated, is a boundary

value problem of growing importance in soil mechanics;

9. satisfies the requirements of Drucker's postulate of stability in the

small in the forward (or monotonic) sense, which contributes to

computational stability;

10. an associative flow rule results in symmetric stiffness matrices in

finite element calculations which are much more economical than the

non-symmetric ones that emanate from non-assocative flow rules;

1.it is copttonll economical and easy to implement since there is

no need to keep track of the evolution of any so-called plastic

etc.) during the deformation;

12. by using some straightforward modifications (which are familiar to

those acquainted with the bounding surface concept), the theory can

be se pt oe (ylc adnngapcso an eair n

13. the consolidation yield surface can be easily modified to model

anisotropic plastic flow as a deviation from normality to the

"isotropic" yield surface using the method suggested by Dafalias

(1981).2561
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS !1

4.1 Introduction

A number of extremely important developments and conclusions were

obtained from both the analytical and the laboratory study reported herein.

The experimental investigation will be presented first, since it had a

significant influence on the theoretical work as well as any planned future

development.

4.2 Laboratory Results

Basically, besides the hollow cylinder data of Saada (1985), the

University of Florida conducted three separate series of triaxial tests on the

identical sand and initial conditions as was performed by Saada (1985). The

tests encompassed: cyclic hydrostatic compression, cyclic conventional

triaxial compression (CTC) experiments with different initial cell pressures

and deviatoric loads, and special triaxial tests which involved both extension

and compression loading.

Based on the monotonic hydrostatic response it was realized that for

appreciable monotonic mean pressure increases, Reid Bedford sand developed an

isotropic strain field, whereas in cyclic loading the sand exhibited

significant stress-induced anisotropy. It was also discovered in the course

of this study that the magnitude of strains measured with the conventional

burette shaft displacement measuring system were on the same order as those

associated with membrane penetration effects. Since the local DCDT monitoring

system spanned the soil grains, resulting in little, if any membrane
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penetration problems, it was believed to be a better monitoring system than

the conventional approach.

From the conventional triaxial stress paths, a number of stress-strain-

strength characteristics of Reid Bedford sand were gleaned. First, a

comparison of the CTC response which involved prior hydrostatic compression

with virgin monotonic loading, revealed that prior loading of a hydrostatic

nature induced only minor anisotropic strain influences. However, cyclic CTC

loading induced both alterations in the strain rate directions and the

strength. These latter changes were associated with the rearrangement of the

soil fabric, i.e., densification - volumetric compression. Secondly, the

conventional triaxial tests which involved a combination of different axial

stress levels and initial cell pressures on the same specimen resulted in the

information that both the virgin and reloading stress-strain characteristics,

if normalized with respect to the initial mean stress, are quite similar.

Finally, the latter series of tests also suggested that the assumption of the

yield surface being attached to the stress state is not a bad first approach,

i.e., the plastic modulus on reloading is similar to its virgin counterpart.

Based on a special series of triaxial tests performed to replicate the

hollow cylinder representation of a passing moving wheel, comes some of the

most startling results. In a comparison of a triaxial test which reproduces

the magnitudes of the principal stresses of a moving wheel versus a

conventional cyclic compression test, it was observed that the standard cyclic

CTC exhibited more permanent axial strains, but less volumetric strains than

the triaxial version of the moving wheel. This difference was attributed to *
the fabric rearrangement, in particular the densification due to particle

rotation and sldin9 in the latter test over its former counterpart. Also,

the smaller permanent axial strains generated in the special test compared to
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those obtained in the conventional cyclic CTC were associated with the denser

fabric in the case of the former over the latter. A study of Ishihara's

(1983) correlation of a hollow cylinder representation of a moving wheel with

the conventional cyclic CTC on Toyoura sand reveals similar conclusions:

significant fabric rearrangement is occurring (particle sliding, rotating,

volumetric compression) in the case of the former over the latter. However,

contrary to the previous study (see Section 1.3.3), Ishihara's study showed

not only less permanent volumetric strains, but significantly less axial

strains for the conventional CTC experiment compared to those measured in the

hollow cylinder representation (a factor of three). This response was

attributed to the fact that when all the fabric rearrangement was occurring in

the hollow cylinder representation of a moving wheel, the axial loads were

also increasing, whereas the previous study (see Section 1.3.3), they were

eithei constant or decreasing. In light of the above study, the

representation of a moving wheel stress path within a triaxial device is not

recommended.

In a study of Saada's hollow cylinder experimental investigation of the

stress-strain-strength characteristics of Reid Bedford sand incorporating

rrotation of principal planes (see Chapter 3), a number of very important

observations were noted. A correlation of strength measured in the hollow

cylinder device to a number of past proposed strength envelopes (Lade,

Matsuoka, etc.), Table 3.5, revealed that in all instances the experimental

hollow cylinder results were significantly different than the proposed

strength criteria (a strength criteria which was developed from true triaxial

experiments). Moreover in the hollow cylinder test, as the principal planes

rotated, significant amounts of volumetric compression was occurring, and in

most instances exceeded the peak values recorded in the conventional tests
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(CTC). Correlation of CTC results to true triaxial results at different Lode

angles (see Chapter 2) for Ottawa sand at a recent Workshop, "Limit

Equilibrium, Plasticity and Generalized Stress-Strain In Geotechnical

Engineering" (Yong et. al., 1980), revealed that there was almost an order of

magnitude less volumetric compression if the Lode angle (see Chapter Two) were

to be rotated away from vertical. Given the above results, it is a belief of

tne investigators that significant amounts of fabric structure change are

occurring in the case of the hollow cylinder tests over and above what

possibly could occur in a true triaxial device. Moreover, it is suggested

that this fabric rearrangement is associated not as much with stress path

and/or anistropy, but with the applied stress tractions (shear stresses in

particular).

The above conclusions raises an interesting question as to the

significance of anisotropy. if a soil specimen which was subject to a stress

traction resulting in a particular rotation of principal planes in a hollow

cylinder device, was tested at the same principal stresses in a true triaxial

device and gave dissimilar stress-strain-strength response as the hollow

cylinder test, should it be attributed to anisotropy or to the particulate

nature of the material? In the truest sense, anisotropy effects are those

associated with the rotation of the material reference under a given set of

boundary tractions. The above testing scenario does not meet this criteria,

and to the investigators' knowledge there does not presently exist a series of

'- experimental tests which address this problem. However, it is the opinion of

the investigators that the application of shear tractions on the boundary will

alter the soil's fabric more significantly than any rotation of the material

reference (anisotropy); consequently there is a distinct possibility that
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soil, sand in particular, may not be feasible to characterize as a continuum,

i.e., it violates the Principle of Material Frame Indifference

(Objectivity). (See Section 2.1).

From all of the above discussions, it is concluded that there is a

significant need for laboratory experimentation to probe the influence of

anisotropy and boundary tractions, independently of one another, for various

rotated principal directions. The former should be undertaken in a cubical

triaxial device and the latter with hollow cylinder equipment. Also, it is

extremely important that an experimental program be initiated to investigate

the influence of boundary tractions on a soil's fabric (in particular a

photoelastic study of micro stresses, particle sliding, rotation, etc.).

4.3 Theoretical Results

Judging from its performance in predicting response for numerous stress

paths, its intrinsic features, and its relative simplicity, the proposed

constitutive model for granular material does seem to be an attractive new

approach. With regard to its effectiveness in predicting stress paths, the

following conclusions are drawn:

1. The representation predicted remarkably well a comprehensive series

of axial compression paths over a wide range of densities and

confinement pressures (data from Hettler et. al., 1984). This

attests to the rationality of the formulation in two respects: a)

the density dependence of the material parameters, and b) the

pressure sensitivity of the material response. The remaining data

sets test the rationale for its extension to more general paths of

loading.

2. Very realistic simulations were generated for a wide variety of

linear monotonic stress paths emanating from a fixed point on the
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hydrostatic axis (data from Saada et. al., 1983, and Chapter 1).

From this particular test series, it was noted that further

laboratory investigation of the influence of boundary tractions

versus anistropy is warranted.

3. The pressuremeter simulation showed that the model performs sensibly

along a stress path which in general non-linear and non-proportional

and which rotates on the octahedral plane (data from Davidson,

1983). However, it should be recognized that the principal plane

rotation are those associated with changing normal stresses not shear

tractions.

4. The stress paths of Tatsuoka and Ishihara (1974a, 1974b)

demonstrated, primarily in a qualitative sense, the realistic aspects

of the simple representation for the relatively complicated load-

unload-reload loading programs shown in Figure 3.36. The simple

model, with no hardening, appears to be particularly appropriate for

reloading paths in which the direction of the shear stress is

completely reversed (data from Tatsuoka and Ishihara, 1974b).

Quantitatively, the calculated stress-strain curves are about 15%

stiffer than the measured data. The source of this problem is the

one-parameter from the interpolation rule used to model the decrease

of the plastic modulus from its bulk modulus magnitude on the

hydrostatic axis to zero at the limit line.

5. Using some straightforward hardening modifications, the flexibility

of the formulation was illustrated by predicting: a) the influence

of istropic preloading on a subsequent axial compression path (data

from Hettler et. al., 1984), and b) the accumulation of permanent
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strain (or cyclic hardening) in a cyclic uniaxial compression test

(data from Chapter 1).

From a practical viewpoint, the model is conceptually easy to understand

and to implement, and it is also very economical from the computational -

standpoint. Its parsimony is a direct consequence of:

1. the use of a stress dependent plastic modulus, which marks a break in

the trend of placing the consistency condition central to theI

determination of the plastic modulus;

2. permitting the material to remain at yield during unloading;

3. hypothesizing that no change in state is a useful first approximation

for sand;

4. using an infinitesimal strain definition of yield instead of the

traditional offset or Taylor-Quinney (1931) definition; and

5. according independent status to the yield surface, the limit surface,

and the hardening control surface.

A number of factors dealing with the material constants also lend

credibility to the proposal, and among these are:

1. the ability to correlate each constitutive parameter to one of the

"fundamental" geotechnical parameters;I

2. the dependence of each parameter only on the initial porosity, as

should be expected for sands; and

3. the straightforward initialization procedure which, because of the

implicit linear mena pressure normalization necessitates only input

data from two standard experiments: an axial compression test and a
hydrostatic compression test.

Despite the many positive comments, the seriousness of the model 's

limitations remain to be probed, and many avenues of research and possible
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improvements are still to be explored. The main issues presented in order of

importance, are:

1. How significant are the differences associated with boundary

tractions and those associated with anisotropy. Moreover, it is

possible to characterize the soil's fabric alterations through the

boundary tractions. This is a necessity, if one plans on

representing the hollow cylinder behavior with the true triaxial

response, even if one has accounted for anisotropy. It may be

possible to keep tract of the latter's influence through a second

order phenomenological fabric tensor. However, the former is only

possible if a micro mechanical fabric study is undertaken.

2. Presently, little is known on influence of cyclic loading on the

alteration of the soil 's fabric. For instance, is strength and

plastic flow significantly altered? The preliminary study in Chapter

1 for cyclic CTC data does show appreciable variations. Moreover,

how can such influences be incorporated into the simple model? Maybe
th saescn.odrfbi tno icusdaoe

3. How serious is the limitation of Figure 3.61 showing the range of

stress increments which can penetrate the limit surface as elastic

unloading or neutral loading paths? What class of practical problems

(if any) will it affect? And if it does prove to be a major

drawback, how can it be circumvented or corrected? With the theory

in its present form, a check should be included in finite element

applications to detect the possibility of stress points straying into

the forbidden zone outside the limit surface.

- In a less general context, many other aspects of the model may be

improved; for example:
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1. A more complicated interpolation rule may be selected for the field

of plastic moduli to simulate stress-strain curves in which the

plastic modulus decreases more rapidly below the zero dilation line.

2. Degradation effects as well as a stress path memory variable to

monitor the degree of stress reversal may also be used to improve the

hardening option. If one follows the approach used in this study, -

these variables will only influence the plastic modulus. -

-~ _
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APPENDIX A

DERIVATION OF ANALYTICAL REPRESENTATION OF
THE DILATION PORTION OF THE YIELD SURFACE

1Start by considering the following general segond order equation

(defined for convenience in an arbitrary rectangular Cartesian x-y

U. coordinate system) to which the relevant constraints shall be

subsequently applied:

F - a x2 + b y2 + c xy + d y + e x + f - 0 . (A.1)

As a first step, equation A.1 can be divided by the coefficient of

x2 , "a", and then the constants can be renamed such that b - b/a, c =

c/a, etc.; this algebraic operation results in

F- X 2  by 2  cxy d y + e x + f - 0 . (A.2)

Inserting the stress invariant variables in place of x and y in

equation A.2 yields

F - Is2 + b J2 + c IV'J2 + d /J 2 + e I, + f - 0 . (A.3)

Equation A.3 is now subjected to four consecutive constraints to

Vw ensure that the function is continuous with the ellipse and satisfies

certain boundary stipulations.

Constraint #1: F - 0 at I, - /J2- 0; this implies that the constant f

is equal to zero, and as a result, equation A.3 reduces to

F - 12 + b J 2 + c I1/J2 + d VJ 2  + e I, = 0 . (A.4)

Constraint #2: at I - /J2- 0, dVJ2 /dI - S, and this condition

establishes that
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dVJ 2/dI11 -aF/3II + aF/VJ2
* *

" - (211 + c VJ2 * e) + (2 b V/J2 + c I, I d) -S,

from which we see

e - -S d . (A.5)

Substitution of equation A.5 into equation A.4 gives

F- + b J, + c I/J 2 + d /J 2 -SdIs - (A.6)

Constraint #3: at I, - (Io/Q), /J2  - N (Io/Q). Substituting this

information into equation A.6 shows that

d - (Io/Q) El + bN2 + cN] + ES - N] . (A.7)

And now we can substitute A.7 into equation A.6 to obtain

F - 11 + b J2 + a IIVJ2 + (IO/Q) El + bN2 + cN] {/J2 * S III

[S-N ]

(A.8)

Constraint #4: at the zero dilation point [I, - Io/Q, VJ2  - N (Io/Q)],

dVJ2/IdI, - -aF/aI1 + 3F/3VJ2 * 0 I

which implies that 3F/al, - 0. Using these requirements in equation A.8

results in
.*

2 I, + C J - S (Io/Q) [I + bN2 + cN] - 0

ES - N ]

from which we then see that

c - (S/N2 ) - (2/N) - S b . (A.9)

Finally, the substitution of equation A.9 into equation A.8 gives

the following expression for the yield surface characterizing the

meridional section between the limit line and the zero dilation line:

F- I + b J, + ES - 2 - Sb] I1/J2  +

% N 2  N
•(I/Q) El- bN] {1J - S I, - 0 (A.1O)

N

"Iv
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After exhausting all available constraints, inspection of equation

A.10 reveals that we have eliminated all but one independent parameter

(i.e., "b") from the original set (i.e., "a", "b", "c", "d", 'lef, &

"f"). The slope S is usually fixed at a magnitude of 1.5.

Range of the parameter "b"

Following the standard procedure outlined by Beyer (1981, p. 250),

the restrictions on the parameter b are investigated by looking at how

its magnitude affects the nature of the graph of this quadratic in I,
*

and VJ 2. Table A.1 gives the details of the general procedure. For the

particular function derived here, equation A.10,

A - -1 (Io/Q)2 (1- bN)
2 (S - 1)2

4 N N

J - b - 1 [S - 2 - Sb] 2

4 N2  N

I - 1 + b , and

K - - (1 + S2 ) 1 (IO/Q)2 (1- bN)2 .

4 N

From these equations, we see that

b - (I - 2)2 (A.11)

N S

identifies a parabolic conic section. Magnitudes of b greater than that

specified by equation A.11 gives ellipses and those smaller than this

magnitude give hyperbolas. Furthermore, to ensure that A A 0, b must not

be exactly equal to 1. In fact, if b - 1 the quadratic equation
N 2  N 2

degenerates to case 9 of Table A.1 to give the equation of the zero

,

dilation line ,/J2/11 - N. As b * --, the equation of the yield surface,

equation A.10, simplifies to

C- , .. - .. . . . . . .



Table A.1 Formulas for Use in Inspecting the Nature of the
Quadratic Function Describing the Dilation Portion of
the Yield Surface

General quadratic in x and y: ax2 + 2hxy + by2 + 2gx + 2fy + c -0

Definitions: A - a (bc - f2 ) _ h (hc - gf) + g (hf - bg)
J - ab - h 2

I- a+b
K ac - g2 + bc - f2

CASE a J /I K CONIC

1 0 0 > 0 < 0 real ellipse

2 A 0 > 0 > 0 imaginary ellipse

3 A0 <0 hyperbola

4 A 0 0 parabola

5 0 < 0 real intersecting

lines

6 0 > 0 conjugate complex
intersecting lines

7 0 0 < 0 real distinct
parallel lines

8 0 0 > 0 conjugate complex
parallel lines

9 0 0 0 coincident lines

Source: Beyer, 1981
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F - - S I,/J 2  - (Io/Q) N {/J2  - S 1) - 0

or alternatively,

P F - -(J2 - S I,) (CJ2 - N 1_) - 0,

Q
which shows that it represents two straight line portions: the

horizontal line VJ2 - N (Io/Q) intersecting the line /J2 /I* - S.

Therefore, from these two extreme cases, we see that the parameter b

must lie in the range

< b < 1 (A.12)
N 2

M
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APPENDIX B

COMPUTATION OF THE GRADIENT TENSOR TO THE YIELD SURFACE

The gradient to the yield surface is

3F - F dI, + V dJ + aF dO (B.1)
ao 31, do J/JI do Be do

where (cf. equation 2.2.2.33)

sin 38 - [3 3 (J1//J2 ")] • (B.2)

From equation B.2 we find that

d8 /3 3j J3 (B-3)
do 2 cos 38 ac C/J2] Is Pill a,

Substitution of equation B.3 into equation B.1 yields (in indicial

notation)

V - VF 3F 31, + {aF - /3 3 J3 F } a . +

ao BI ao1  3"'j2  2 cos 38 IVJ214 Be 30~

{ /3 1 3F  jB (B.4)

2 Cos 38 /"213 Be ao~

where

l ij (B.5)
doi i

d 2 - I sj (B.6) --

* do 2/J 2ii
TdJ - + 1 Jz 6 (B.7) "" j 

f

do1 j_

and
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T

{a'1 = {(s2253 - s2s), (3s1s3 -ss2),(sj1sz2 - 3122.-

(323S13 -S,,S 2 ),(S,,S1 2 - s1,s2,),(SSS, - S22s,)}

In order to find the gradient tensor, we need therefore only to

compute the partial derivatives 3F , 3F , and aF of equations 3.3.3.1

ail av'j2  ae

and 3.3.4.1. We find from equation 3.3.3.1,

a_ " 2(1, - I.) (B.8)

ail

F . 2 {(Q-1)/N} 2 VJ2  (B.9)
aVJ2 [g(e)] 2

and

F - 2 ((Q-1)/N} 2 J2  • (B.1O)

ag(e) WgOe))'
Also, from equation 3.3.1.8, recognize that

dg(.)- 6R (-R) os 38 (B.11)

dO {[1+R] - E1-R] sin 3e2 

which is to be used in the following:

aF - aF dg(O)

ae ag(e) de

And for the more complicated choice of g(B) (equation 3.3.1.6),

du dv
dg(O) _ v de - u d- , (B.12)

de v2

where

u - A (1-R 2 ) + (2R-1) V[(2+B) (1-R) + 5R2 - 4R],

v -, (1-2R) 2 + 2(1-R) + B(1-R 2 ) ,

dB -

du- (1-R2 ) dA + 1 (2R-1) (1-R2 ) To

d' Ze I /[(2+B)(I-R 2 ) + 5R - 4R]

dv - (1-RI) dB ,

de dO

A - V3 cose - sine,
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CIO. B - cos2e - /3 sin2e ,

dA - -/3 sine - cose

Uand
dB - -2 sin2e - 2/3 cos2er-

Similarly, from equation 3.3.4.1, we find that

F 2 Is + [S - 2 Sb] VJ1  I - (Ia/Q)E1- bNJ S (B.13)

aI Na N cg(e)] N

.. -2 b /J 2  + ES -2- Sb I, 1 +

avoa Eg(e)] 2  Na N [(e)]

(Io/Q)[1 - bN3 1 (B.14)

N g(e)]

and

F -2 b J -CS- 2- Sb] I,/J2  1

ag(e) Eg(e)]' N2  N cg(e)]

(IO/Q)C! - bN] 1 ,/J2  (B.15)

pN N Eg(e))2
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p0 APPENDIX C

EQUATIONS FOR UPDATING THE SIZE OF THE YIELD SURFACE

When the stress state resides on the consolidation portion of the

surface (i.e., when S N),

I - max { - B, ± /(BI- 4 AjC1 )} if Q > 2 (C.1)

2 Al

= - C,/B1  if Q - 2 (C.2)

- min { - B, ± /(BI- 4 AICI)} if Q < 2 (C.3)
2 A,

where

A-2-I

B, - -2 I/Q

and
C1 - I2 + (Q 1)" Ji

For the dilation portion of the yield surface, when /J > N, we

have

I - D , (C.4)

where
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D2 12 b bJa + CS - 2 - Sb] l~

N1  N j
and

E, 1( - bN) (/IJ2 SII)*
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APPENDIX D

PREDICTION OF HOLLOW CYLINDER TESTS USING PROPOSED MODEL
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PREDICTION OF HETTLER'S DATA USING PROPOSED MODEL

2

299



3 2.40

LOG

t~120

0.40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

U 0.02

0.00 0 Measured

-0.0 0 - Predicted

0 MO

-0.06

-0.06

II

HFigure E.1 I easured and predicted response for axial compression
test (03 - 400 kN/m2) on Karlsruhe sand at 92.3%I
relative density (measured data after liettler et al.,

owl 1984)

3()o



2.40

2.00

0.40

0.00
0.00 0.05

... 0.15 0.20 0.25 0.30

0.02

0.00 
Predicted

-0. 04

-0.06

U:* -0.04

0.00 0 0 .1 015 0.20 0.25 0.30kFigure 
E.2 Fleasured and predi ted response for axial compressioneltiv deni3 - 0kJmea On Karlsruhe sand at 99.0Zrai ve4 d n i y ( esured data after Nettler et al.,

301

I 
1



LLi

40

.00

0 0 5 0 .1 0 0 .1 5 0 2 0 0 .2 5 0 . 3 0
0.02

0.00 
PredS cted

-0.02t~

-0.02

-0.06

-0.08

-0.100.5.2
0.00 0.03 0-0 .13 0...2 0.....IFigure 

E- Measured and Predicted response for axial compressiontea (0 - 01) kN/ 2) on Karlsruhe sand at 99.07relative density (measured data after Mettler et al.,
302



I

2.40

2.00
_,, 0 0 a0 %

1.60

CL 1.20
a.

0.50

0.40

0.00 0 ,
0.00 0.05 0.10 0.15 0.20 0.25 0.30

T
M 0.02 o Measured

- Predicted
0.00

-0.02

300

-0.06

-0.08

-0.10 I n I

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure E.4 Measured and predicied response for axial compression
test (03 - 300 kN/m ) on Karlsruhe sand at 99.0%
relative density (measured data after Hettler et al.,
1984)

P303

A A A 6



.-

I 1-

APPENDIX F

COMPUTATION OF THE BOUNDING SURFACE SCALAR MAPPING PARAMETER 8

When the stress state resides on the consolidation surface (i.e.,

when 9 N),

8 " -B, /(B,2-4l AC,) , 1 3 < ",.2A2

where

A2 - I, + ((Q-1)/N 2 J2
[g(e)]2

B2 - 2 (IO/Q) I,

and

C2  102 {(2/Q)-11

For the dilation surface, when /J > N, we have

where

Da - - (IO/Q)[I - bN] { 1 VJ 2 -S I,)

N Eg(e)] -,

and -

E 12 + b J + [S - 2 - S b] I,,/J 1

[g(e)]2 N2  N Eg(e)]
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